1,070 research outputs found

    Scaling up the effects of inbreeding depression from individuals to metapopulations

    Get PDF
    Abstract Inbreeding is common in nature, and many laboratory studies have documented that inbreeding depression can reduce the fitness of individuals. Demonstrating the consequences of inbreeding depression on the growth and persistence of populations is more challenging because populations are often regulated by density- or frequency-dependent selection and influenced by demographic and environmental stochasticity. A few empirical studies have shown that inbreeding depression can increase extinction risk of local populations. The importance of inbreeding depression at the metapopulation level has been conjectured based on population-level studies but has not been evaluated. We quantified the impact of inbreeding depression affecting the fitness of individuals on metapopulation persistence in heterogeneous habitat networks of different sizes and habitat configuration in a context of natural butterfly metapopulations. We developed a spatial individual-based simulation model of metapopulations with explicit genetics. We used Approximate Bayesian Computation to fit the model to extensive demographic, genetic, and life-history data available for the well-studied Glanville fritillary butterfly (Melitaea cinxia) metapopulations in the Åland islands in SW Finland. We compared 18 semi-independent habitat networks differing in size and fragmentation. The results show that inbreeding is more frequent in small habitat networks, and consequently, inbreeding depression elevates extinction risks in small metapopulations. Metapopulation persistence and neutral genetic diversity maintained in the metapopulations increase with the total habitat amount in and mean patch size of habitat networks. Dispersal and mating behavior interact with landscape structure to determine how likely it is to encounter kin while looking for mates. Inbreeding depression can decrease the viability of small metapopulations even when they are strongly influenced by stochastic extinction-colonization dynamics and density-dependent selection. The findings from this study support that genetic factors, in addition to demographic factors, can contribute to extinctions of small local populations and also of metapopulations. This article is protected by copyright. All rights reserved.Peer reviewe

    Quantifying resistance and resilience to local extinction for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Ecological Society of America via the DOI in this recordSpecies-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience). We explore the application of this framework to guide the conservation of a group of threatened bird species endemic to papyrus (Cyperus papyrus) swamps in East and Central Africa. Using occupancy data for five species collected over two years from a network of wetlands in Uganda, we determine the local and landscape factors that influence local extinction and colonization, and map expected rates of population turnover across the network to draw inferences about the locations which contribute most to regional resistance and resilience for all species combined. Slight variation in the factors driving extinction and colonization between individual papyrus birds led to species-specific differences in the spatial patterns of site-level resistance and resilience. However, despite this, locations with the highest resistance and/or resilience overlapped for most species and reveal where resources could be invested for multi-species persistence. This novel simplified framework can aid decision making associated with conservation planning and prioritization for multiple species residing in overlapping, fragmented habitats; helping to identify key sites that warrant urgent conservation protection, with consideration of the need to adapt and respond to future change. This article is protected by copyright. All rights reserved.Natural Environment Research Council (NERC)The Explorers ClubBritish Ornithologists’ UnionRoyal Geographic SocietyJohn Muir TrustGilchrist Educational Trus

    Unexpectedly diverse forest dung beetle communities in degraded rain forest landscapes in Madagascar

    Get PDF
    Tropical forests, which harbor high levels of biodiversity, are being lost at an alarming speed. Madagascar, a biodiversity hotspot, has lost more than half of its original forest cover. Most of the remaining forests are small fragments of primary and secondary forest with differing degrees of human impact. These forests, as well as coffee and fruit plantations, may be important in supporting the forest-dependent biodiversity in Madagascar but this has been little studied. In Madagascar, dung beetles, which offer important ecosystem services, are largely restricted to forests. We examined the ability of fragmented and degraded forests to support dung beetle diversity, compared to the large areas of primary forest in eastern Madagascar. We found a general trend of a reduction of species with a loss of forest connectivity. In contrast, a higher level of forest disturbance was associated with higher species diversity. In several sites of low-quality forest as many or more species were found as in less disturbed and primary forests. The average size of dung beetles was smaller in the lower quality localities than in the primary forests. These findings suggest that many forest dung beetles in Madagascar are better adapted to forest disturbance than earlier expected, although they require some level of connectivity to surrounding forest. in Malagasy is available with online material.Peer reviewe

    Experimental Beetle Metapopulations Respond Positively to Dynamic Landscapes and Reduced Connectivity

    Get PDF
    Interactive effects of multiple environmental factors on metapopulation dynamics have received scant attention. We designed a laboratory study to test hypotheses regarding interactive effects of factors affecting the metapopulation dynamics of red flour beetle, Tribolium castaneum. Within a four-patch landscape we modified resource level (constant and diminishing), patch connectivity (high and low) and patch configuration (static and dynamic) to conduct a 23 factorial experiment, consisting of 8 metapopulations, each with 3 replicates. For comparison, two control populations consisting of isolated and static subpopulations were provided with resources at constant or diminishing levels. Longitudinal data from 22 tri-weekly counts of beetle abundance were analyzed using Bayesian Poisson generalized linear mixed models to estimate additive and interactive effects of factors affecting abundance. Constant resource levels, low connectivity and dynamic patches yielded greater levels of adult beetle abundance. For a given resource level, frequency of colonization exceeded extinction in landscapes with dynamic patches when connectivity was low, thereby promoting greater patch occupancy. Negative density dependence of pupae on adults occurred and was stronger in landscapes with low connectivity and constant resources; these metapopulations also demonstrated greatest stability. Metapopulations in control landscapes went extinct quickly, denoting lower persistence than comparable landscapes with low connectivity. When landscape carrying capacity was constant, habitat destruction coupled with low connectivity created asynchronous local dynamics and refugia within which cannibalism of pupae was reduced. Increasing connectivity may be counter-productive and habitat destruction/recreation may be beneficial to species in some contexts

    Does landscape-scale conservation management enhance the provision of ecosystem services?

    Get PDF
    Biodiversity conservation approaches are increasingly being implemented at the landscape-scale to support the maintenance of metapopulations and metacommunities. However, the impact of such interventions on the provision of ecosystem services is less well defined. Here we examine the potential impacts of landscape-scale conservation initiatives on ecosystem services, through analysis of five case study areas in England and Wales. The provision of multiple ecosystem services was projected according to current management plans and compared with a baseline scenario. Multicriteria analysis indicated that in most cases landscape-scale approaches lead to an overall increase in service provision. Consistent increases were projected in carbon storage, recreation and aesthetic value, as well as biodiversity value. However, most study areas provided evidence of trade-offs, particularly between provisioning services and other types of service. Results differed markedly between study areas, highlighting the importance of local context. These results suggest that landscape-scale conservation approaches are likely to be effective in increasing ecosystem service provision, but also indicate that associated costs can be significant, particularly in lowland areas

    Globally coupled chaotic maps and demographic stochasticity

    Full text link
    The affect of demographic stochasticity of a system of globally coupled chaotic maps is considered. A two-step model is studied, where the intra-patch chaotic dynamics is followed by a migration step that coupled all patches; the equilibrium number of agents on each site, NN, controls the strength of the discreteness-induced fluctuations. For small NN (large fluctuations) a period-doubling cascade appears as the coupling (migration) increases. As NN grows an extremely slow dynamic emerges, leading to a flow along a one-dimensional family of almost period 2 solutions. This manifold become a true solutions in the deterministic limit. The degeneracy between different attractors that characterizes the clustering phase of the deterministic system is thus the NN \to \infty limit of the slow dynamics manifold
    corecore