928 research outputs found

    Neurobiology of Sleep Disturbances in PTSD Patients and Traumatized Controls: MRI and SPECT Findings

    Get PDF
    OBJECTIVE: Sleep disturbances such as insomnia and nightmares are core components of post-traumatic stress disorder (PTSD), yet their neurobiological relationship is still largely unknown. We investigated brain alterations related to sleep disturbances in PTSD patients and controls by using both structural and functional neuroimaging techniques. METHOD: Thirty-nine subjects either developing (n = 21) or not developing (n = 18) PTSD underwent magnetic resonance imaging and a symptom-provocation protocol followed by the injection of 99mTc-hexamethylpropyleneamineoxime. Subjects were also tested with diagnostic and self-rating scales on the basis of which a Sleep Disturbances Score (SDS; i.e., amount of insomnia/nightmares) was computed. RESULTS: Correlations between SDS and gray matter volume (GMV)/regional cerebral blood flow (rCBF) were computed in the whole sample and separately in the PTSD and control groups. In the whole sample, higher sleep disturbances were associated with significantly reduced GMV in amygdala, hippocampus, anterior cingulate, and insula; increased rCBF in midbrain, precuneus, and insula; and decreased rCBF in anterior cingulate. This pattern was substantially confirmed in the PTSD group, but not in controls. CONCLUSION: Sleep disturbances are associated with GMV loss in anterior limbic/paralimbic, PTSD-sensitive structures and with functional alterations in regions implicated in rapid eye movement-sleep control, supporting the existence of a link between PTSD and sleep disturbance

    Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and mood disorders is common. Alterations of the cerebellum and frontal regions have been reported in neuro-imaging studies of ADHD and major depression.</p> <p>Methods</p> <p>Thirty chronically depressed adult females of whom 16 had scores below, and 14 scores above, cut-offs on the 25-items Wender Utah Retrospective Scale (WURS-25) and the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS) were divided into subgroups designated "Depression" and "Depression + ADHD", respectively. Twenty-one of the patients had some audiological symptom, tinnitus and/or hearing impairment. The patients were investigated with other rating scales and <sup>99m</sup>Tc-HMPAO SPECT. Controls for <sup>99m</sup>Tc-HMPAO SPECT were 16 healthy females. SPECT was analyzed by both statistical parametric mapping (SPM2) and the computerized brain atlas (CBA). Discriminant analysis was performed on the volumes of interest generated by the CBA, and on the scores from rating scales with the highest group differences.</p> <p>Results</p> <p>The mean score of a depression rating scale (MADRS-S) was significantly lower in the "Depression" subgroup compared to in the "Depression + ADHD" subgroup. There was significantly decreased tracer uptake within the bilateral cerebellum at both SPM and CBA in the "Depression + ADHD" subgroup compared to in the controls. No decrease of cerebellar tracer uptake was observed in "Depression". Significantly increased tracer uptake was found at SPM within some bilateral frontal regions (Brodmann areas 8, 9, 10, 32) in the "Depression + ADHD" subgroup compared to in "Depression". An accuracy of 100% was obtained for the discrimination between the patient groups when thalamic uptake was used in the analysis along with scores from Socialization and Impulsivity scales.</p> <p>Conclusion</p> <p>The findings confirm the previous observation of a cerebellar involvement in ADHD. Higher bilateral frontal <sup>99m</sup>Tc-HMPAO uptake in "Depression + ADHD" compared to in "Depression" indicate a difference between these subgroups. <sup>99m</sup>Tc-HMPAO uptake mechanisms are discussed.</p

    Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family

    Get PDF
    Developmental dyslexia is the most common learning disorder in children. Problems in reading and writing are likely due to a complex interaction of genetic and environmental factors, resulting in reduced power of studies of the genetic factors underlying developmental dyslexia. Our approach in the current study was to perform exome sequencing of affected and unaffected individuals within an extended pedigree with a familial form of developmental dyslexia. We identified a two-base mutation, causing a p.R229L amino acid substitution in the centrosomal protein 63 kDa (CEP63), co-segregating with developmental dyslexia in this pedigree. This mutation is novel, and predicted to be highly damaging for the function of the protein. 3D modelling suggested a distinct conformational change caused by the mutation. CEP63 is localised to the centrosome in eukaryotic cells and is required for maintaining normal centriole duplication and control of cell cycle progression. We found that a common polymorphism in the CEP63 gene had a significant association with brain white matter volume. The brain regions were partly overlapping with the previously reported region influenced by polymorphisms in the dyslexia susceptibility genes DYX1C1 and KIAA0319. We hypothesise that CEP63 is particularly important for brain development and might control the proliferation and migration of cells when those two events need to be highly coordinated.Peer reviewe

    The challenge of studying perovskite solar cells’ stability with machine learning

    Get PDF
    Perovskite solar cells are the most dynamic emerging photovoltaic technology and attracts the attention of thousands of researchers worldwide. Recently, many of them are targeting device stability issues–the key challenge for this technology–which has resulted in the accumulation of a significant amount of data. The best example is the “Perovskite Database Project,” which also includes stability-related metrics. From this database, we use data on 1,800 perovskite solar cells where device stability is reported and use Random Forest to identify and study the most important factors for cell stability. By applying the concept of learning curves, we find that the potential for improving the models’ performance by adding more data of the same quality is limited. However, a significant improvement can be made by increasing data quality by reporting more complete information on the performed experiments. Furthermore, we study an in-house database with data on more than 1,000 solar cells, where the entire aging curve for each cell is available as opposed to stability metrics based on a single number. We show that the interpretation of aging experiments can strongly depend on the chosen stability metric, unnaturally favoring some cells over others. Therefore, choosing universal stability metrics is a critical question for future databases targeting this promising technology

    Neurobeachin, a Regulator of Synaptic Protein Targeting, Is Associated with Body Fat Mass and Feeding Behavior in Mice and Body-Mass Index in Humans

    Get PDF
    Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity

    Technology transfer model for Austrian higher education institutions

    Get PDF
    The aim of this paper is to present the findings of a PhD research (Heinzl 2007, Unpublished PhD Thesis) conducted on the Universities of Applied Sciences in Austria. Four of the models that emerge from this research are: Generic Technology Transfer Model (Sect. 5.1); Idiosyncrasies Model for the Austrian Universities of Applied Sciences (Sect. 5.2); Idiosyncrasies-Technology Transfer Effects Model (Sect. 5.3); Idiosyncrasies-Technology Transfer Cumulated Effects Model (Sect. 5.3). The primary and secondary research methods employed for this study are: literature survey, focus groups, participant observation, and interviews. The findings of the research contribute to a conceptual design of a technology transfer system which aims to enhance the higher education institutions' technology transfer performance. © 2012 Springer Science+Business Media, LLC
    corecore