58 research outputs found

    The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury

    Get PDF
    The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after strok

    Blockade of MCAM/CD146 impedes CNS infiltration of T cells over the choroid plexus

    Get PDF
    Background: Very late antigen 4 (VLA-4;integrin alpha 4 beta 1) is critical for transmigration of T helper (T-H) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human T(H)17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. Methods: Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of alpha 4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. Results: Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell alpha 4-integrin expression (CD4::/tga4(-/-)), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of alpha 4, beta 1, gamma 1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system;blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin alpha 4. Larninin alpha 4 was further detected in situ in CP endothelial-basement membranes in MS patients' brain tissue. Conclusions: Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders

    Understanding the role of the perivascular space in cerebral small vessel disease

    Get PDF
    Small vessel diseases are a group of disorders that result from pathological alteration of the small blood vessels in the brain, including the small arteries, capillaries and veins. Of the 35-36 million people that are estimated to suffer from dementia worldwide, up to 65% have an SVD component. Furthermore, SVD causes 20-25% of strokes, worsens outcome after stroke and is a leading cause of disability, cognitive impairment and poor mobility. Yet the underlying cause(s) of SVD are not fully understood.Magnetic resonance imaging (MRI) has confirmed enlarged perivascular spaces (PVS) as a hallmark feature of SVD. In healthy tissue, these spaces are proposed to form part of a complex brain fluid drainage system which supports interstitial fluid exchange and may also facilitate clearance of waste products from the brain. The pathophysiological signature of PVS, and what this infers about their function and interaction with cerebral microcirculation, plus subsequent downstream effects on lesion development in the brain has not been established. Here we discuss the potential of enlarged PVS to be a unique biomarker for SVD and related brain disorders with a vascular component. We propose that widening of PVS suggests presence of peri-vascular cell debris and other waste products that forms part of a vicious cycle involving impaired cerebrovascular reactivity (CVR), blood-brain barrier (BBB) dysfunction, perivascular inflammation and ultimately impaired clearance of waste proteins from the interstitial fluid (ISF) space, leading to accumulation of toxins, hypoxia and tissue damage.Here, we outline current knowledge, questions and hypotheses regarding understanding the brain fluid dynamics underpinning dementia and stroke through the common denominator of SVD

    The effects of fibroblast growth factor-2 om human bone marrow cells

    Get PDF
    Bibliography: leaves 163-191

    Building selection by the common brushtail possum (Trichosurus vulpecula)

    No full text
    Context: The common brushtail possum (Trichosurus vulpecula) is a protected native species in Australia that can access buildings in urban areas and cause considerable damage or disruption to building occupants. Although several strategies to discourage this species from entering buildings have been recommended, few have been evaluated empirically. Aims: Our study aims to analyse how landscaping and building construction influence occupancy of buildings by the common brushtail possum. Methods: We collated reports of possums occupying 134 buildings over 12 years on the campus of The Australian National University (ANU), in the Australian Capital Territory (ACT). We used generalised linear modelling (GLM) to identify associations between the total number of reported possum-related incidents for buildings and a range of landscape and building characteristics. Key results: Controlling for the effect of building size, we found that the number of reported possum-related incidents in buildings was positively associated with the percentage of tree and shrub canopy cover within the calculated home-range buffer distance of 49 m from buildings, length of canopy overhanging roofs and building age, and negatively associated with tree species richness and number of trees with natural hollows and nest boxes within 49 m of buildings. There were likely to be more possum-related reports from buildings in areas where the dominant tree genus was native, buildings with parapets (walls extending above the roof), buildings with structures penetrating from the roof, buildings with tile roofs and gable roofs. Conclusions: A combination of suitable habitat surrounding buildings, suitable access to the roofs of buildings and weak points in building roofs (e.g. parapets, roof penetrations), makes them more vulnerable to occupancy by the common brushtail possum. Implications: Our results provided clues for managing existing buildings, or designing new buildings, in a way that may reduce the likelihood of occupancy by the common brushtail possum. Our study also demonstrated how building-maintenance records can be used to address human-wildlife conflict over time.The ANU Facilities and Services Division provided funding for this research
    • …
    corecore