422 research outputs found

    PPARγ and LXR Signaling Inhibit Dendritic Cell-Mediated HIV-1 Capture and trans-Infection

    Get PDF
    Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARγ and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARγ and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARγ and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission. Author SummaryHeterosexual transmission is the primary mode of HIV transmission worldwide. In the absence of an effective vaccine, there is an increasing demand for the development of effective microbicides that block HIV sexual transmission. Dendritic cells (DCs) play a critical role in HIV transmission by efficiently binding virus particles, migrating to lymph nodes, and transmitting them to CD4+ T cells, a process called trans-infection. In addition, DCs secrete proinflammatory cytokines that create a favorable environment for virus replication. DC maturation by pathogen-encoded TLR ligands or proinflammatory cytokines dramatically increases their capacity to capture HIV, migrate to lymphoid tissue, and trans-infect T cells. Here, we report that signaling through the nuclear receptors PPARγ and LXR prevents DC maturation and proinflammatory cytokine production, as well as migration. In addition, PPARγ and LXR signaling prevents efficient DC capture and transfer of infectious HIV by increasing ABCA1-mediated cholesterol efflux. Our studies suggest that PPARγ and LXR may be targets for drugs that can inhibit specific aspects of HIV mucosal transmission, namely inflammation, migration, and virus capture and transfer. These findings provide a rationale for considering PPARγ and LXR agonists as potential combination therapies with conventional anti-viral microbicides that target other aspects of mucosal HIV transmission.National Institutes of Health (AI073149, AI064099, T32-AI07309, T32-AI0764206, F32-AI084558

    Cyclic Voltammetric Experiment - Simulation. Comparisons of the Complex Mechanism Associated with Electrochemical Reduction of Zr4+ in LiCl-KCl Eutectic Molten Salt

    Get PDF
    Nuclear energy increasingly represents an important option for generating largely clean CO2-free electricity and zirconium is a fission product that is expected to be present in irradiated fuels. The present investigation addresses the electrochemical reduction of Zr4+ to Zro in LiCl - KCl eutectic molten salt in the temperature range 425–550◦C using cyclic voltammetry (CV), square-wave voltammetry (SWV) and bulk electrolysis. Simulations of the CV data indicate that the initial reduction proceeds through surface confined steps: Zr4+* + 2e− ↔Zr2+* and Zr2+* + 2e− ↔Zr* processes (* adsorbed species) followed by a peak-shaped complex diffusion controlled step that consists of a combination of closely spaced processes associated with the reactions Zr4+ + 4e− →Zr and Zr4+ + 3e− →Zr+*. Zr+*, probably in the form of ZrCl* is then further reduced to Zro* at even more negative potentials. The simulations provide the first quantitative analysis of the thermodynamics and kinetics of the Zr4+ reduction in the LiCl-KCl eutectic

    Absolute absorption on the potassium D lines: theory and experiment

    Get PDF
    We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162–74) in the code named ElecSus. Comparisons were also made on the 4S \to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors 103\sim {10}^{-3}. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ~3  kHz3\;\mathrm{kHz}

    The Role of Toll-Like Receptor 9 in Chronic Stress-Induced Apoptosis in Macrophage

    Get PDF
    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival.We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing immunosuppression in restraint-stressed mice

    Toll-Like Receptor 9 Is Required for Opioid-Induced Microglia Apoptosis

    Get PDF
    Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6), the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or μ-opioid receptor (μOR) deficient primary microglia, suggesting an involvement of MAPK and μOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require μOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and μOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of μOR is capable of preventing opioid-induced brain damage

    Red Blood Cell Fatty Acid Patterns and Acute Coronary Syndrome

    Get PDF
    BACKGROUND:Assessment of coronary heart disease (CHD) risk is typically based on a weighted combination of standard risk factors. We sought to determine the extent to which a lipidomic approach based on red blood cell fatty acid (RBC-FA) profiles could discriminate acute coronary syndrome (ACS) cases from controls, and to compare RBC-FA discrimination with that based on standard risk factors. METHODOLOGY/PRINCIPAL FINDINGS:RBC-FA profiles were measured in 668 ACS cases and 680 age-, race- and gender-matched controls. Multivariable logistic regression models based on FA profiles (FA) and standard risk factors (SRF) were developed on a random 2/3(rds) derivation set and validated on the remaining 1/3(rd). The area under receiver operating characteristic (ROC) curves (c-statistics), misclassification rates, and model calibrations were used to evaluate the individual and combined models. The FA discriminated cases from controls better than the SRF (c = 0.85 vs. 0.77, p = 0.003) and the FA profile added significantly to the standard model (c = 0.88 vs. 0.77, p<0.0001). Hosmer-Lemeshow calibration was poor for the FA model alone (p = 0.01), but acceptable for both the SRF (p = 0.30) and combined models (p = 0.22). Misclassification rates were 23%, 29% and 20% for FA, the SRF, and the combined models, respectively. CONCLUSIONS/SIGNIFICANCE:RBC-FA profiles contribute significantly to the discrimination of ACS cases, especially when combined with standard risk factors. The utility of FA patterns in risk prediction warrants further investigation

    Consumer involvement in Quality Use of Medicines (QUM) projects – lessons from Australia

    Get PDF
    BACKGROUND: It is essential that knowledge gained through health services research is collated and made available for evaluation, for policy purposes and to enable collaboration between people working in similar areas (capacity building). The Australian Quality Use of Medicine (QUM) on-line, web-based project database, known as the QUMmap, was designed to meet these needs for a specific sub-section of health services research related to improving the use of medicines. Australia's National Strategy for Quality Use of Medicines identifies the primacy of consumers as a major principle for quality use of medicines, and aims to support consumer led research. The aim of this study was to determine how consumers as a group have been represented in QUM projects in Australia. A secondary aim was to investigate how the projects with consumer involvement fit into Australia's QUM policy framework. METHOD: Using the web-based QUMmap, all projects which claimed consumer involvement were identified and stratified into four categories, projects undertaken by; (a) consumers for consumers, (b) health professionals for consumers, (c) health professionals for health professionals, and (d) other. Projects in the first two categories were then classified according to the policy 'building blocks' considered necessary to achieve QUM. RESULTS: Of the 143 'consumer' projects identified, the majority stated to be 'for consumers' were either actually by health professionals for health professionals (c) or by health professionals for consumers (b) (47% and 40% respectively). Only 12 projects (9%) were directly undertaken by consumers or consumer groups for consumers (a). The majority of the health professionals for consumers (b) projects were directed at the provision of services and interventions, but were not focusing on the education, training or skill development of consumers. CONCLUSION: Health services research relating to QUM is active in Australia and the projects are collated and searchable on the web-based interactive QUMmap. Healthcare professionals appear to be dominating nominally 'consumer focussed' research, with less than half of these projects actively involving the consumers or directly benefiting consumers. The QUMmap provides a valuable tool for policy analysis and for provision of future directions through identification of QUM initiatives

    Diabetes Health, Residence & Metabolism in Asians: the DHRMA study, research into foods from the Indian subcontinent - a blinded, randomised, placebo controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coronary heart disease (CHD) is highly prevalent amongst the South Asian communities in Britain. The reasons for this excess CHD risk are multifactorial, but in part relate to a susceptibility to diabetes mellitus - where the aberrant metabolism of non-esterified fatty acids (NEFA) and glucose are likely to underpin vascular disease in this population. Dietary intervention is an important and first line approach to manage increased CHD risk. However, there is limited information on the impact of the South Asian diet on CHD risk.</p> <p>Methods/Design</p> <p>The Diabetes Health, Residence & Metabolism in Asians (DHRMA) study is a blinded, randomised, placebo controlled trial that analyses the efficacy of reduced glycaemic index (GI) staples of the South Asian diet, in relation to cardio-metabolic risk factors that are commonly perturbed amongst South Asian populations - primarily glucose, fatty acid and lipoprotein metabolism and central adiposity. Using a 10-week dietary intervention study, 50 healthy South Asians will be randomised to receive either a DHRMA (reduced GI) supply of chapatti (bread), stone ground, high protein wheat flour and white basmati rice (high bran, unpolished) or commercially available (leading brand) versions chapatti wheat flour and basmati rice. Volunteers will be asked to complete a 75g oral glucose tolerance test at baseline and at 10-weeks follow-up, where blood metabolites and hormones, blood pressure and anthropometry will also be assessed in a standardised manner.</p> <p>Discussion</p> <p>It is anticipated that the information collected from this study help develop healthy diet options specific (but not exclusive) for South Asian ethnic communities.</p> <p>Trial registration</p> <p>Current Controlled Trials <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=ISRCTN02839188">ISRCTN02839188</a></p
    corecore