research

Cyclic Voltammetric Experiment - Simulation. Comparisons of the Complex Mechanism Associated with Electrochemical Reduction of Zr4+ in LiCl-KCl Eutectic Molten Salt

Abstract

Nuclear energy increasingly represents an important option for generating largely clean CO2-free electricity and zirconium is a fission product that is expected to be present in irradiated fuels. The present investigation addresses the electrochemical reduction of Zr4+ to Zro in LiCl - KCl eutectic molten salt in the temperature range 425–550◦C using cyclic voltammetry (CV), square-wave voltammetry (SWV) and bulk electrolysis. Simulations of the CV data indicate that the initial reduction proceeds through surface confined steps: Zr4+* + 2e− ↔Zr2+* and Zr2+* + 2e− ↔Zr* processes (* adsorbed species) followed by a peak-shaped complex diffusion controlled step that consists of a combination of closely spaced processes associated with the reactions Zr4+ + 4e− →Zr and Zr4+ + 3e− →Zr+*. Zr+*, probably in the form of ZrCl* is then further reduced to Zro* at even more negative potentials. The simulations provide the first quantitative analysis of the thermodynamics and kinetics of the Zr4+ reduction in the LiCl-KCl eutectic

    Similar works