20 research outputs found

    High power targets for cyclotron production of 99mTc‡

    Get PDF
    Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is a viable method for the production of clinically useful quantities of 99mTc [2]. Multi-Curie production of 99mTc requires a 100Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of 100Mo targets of both small and large area tar-gets by electrophoretic deposition and subsequent sintering [4]. As part of our efforts to further enhance the performance of molybdenum targets at high beam currents, we have developed a novel target system (initially de-signed for the GE PETtrace cyclotron) based on a pressed and sintered 100Mo plate brazed onto a dispersion-strengthened copper backing. Materials and Methods In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of commercially available 100Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm2 and 250 kN/cm2 is applied by means of a hydraulic press. The pressed molybdenum plate is then sintered in a reducing atmosphere (Ar/2% H2) at 1,700 oC for five hours. The resulting 100Mo plates have about 90–95 % of the molybdenum bulk density. The 100Mo plate is furnace brazed at ~750 oC onto a backing manufactured from a disperse on strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler. This process yields a unique, mechanically and thermally robust target system for high beam power irradiation. Irradiations were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents ≥ 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm2, average) and were found fully intact. Up to 4.7 Ci of 99mTc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations. Results and Conclusion These results demonstrate that our brazed tar-get assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters

    Composite uranium carbide targets at TRIUMF: development and characterization with SEM, XRD, XRF and L-edge densitometry

    No full text
    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.JRC.E-Institute for Transuranium Elements (Karlsruhe

    26Al beam production by a solid state laser ion source at TRIUMF

    No full text
    Many experiments carried out at radioactive beam facilities require the production of intense, isotopically clean and isobar free beams of a particular isotope. At TRIUMF the addition of a resonant ionization laser ion source (TRILIS) enables a multitude of new beams and therefore new experiments to be carried out. 26Al was one of the first radioactive ion beams delivered to an experiment using TRILIS. This paper outlines the development of the 26Al ion beam for nuclear astrophysics.status: publishe

    26Al beam production by a solid state laser ion source at TRIUMF

    No full text
    Many experiments carried out at radioactive beam facilities require the production of intense, isotopically clean and isobar free beams of a particular isotope. At TRIUMF the addition of a resonant ionization laser ion source (TRILIS) enables a multitude of new beams and therefore new experiments to be carried out. 26Al was one of the first radioactive ion beams delivered to an experiment using TRILIS. This paper outlines the development of the 26Al ion beam for nuclear astrophysics

    High power targets for cyclotron production of 99mTc‡

    Get PDF
    Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is a viable method for the production of clinically useful quantities of 99mTc [2]. Multi-Curie production of 99mTc requires a 100Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of 100Mo targets of both small and large area tar-gets by electrophoretic deposition and subsequent sintering [4]. As part of our efforts to further enhance the performance of molybdenum targets at high beam currents, we have developed a novel target system (initially de-signed for the GE PETtrace cyclotron) based on a pressed and sintered 100Mo plate brazed onto a dispersion-strengthened copper backing. Materials and Methods In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of commercially available 100Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm2 and 250 kN/cm2 is applied by means of a hydraulic press. The pressed molybdenum plate is then sintered in a reducing atmosphere (Ar/2% H2) at 1,700 oC for five hours. The resulting 100Mo plates have about 90–95 % of the molybdenum bulk density. The 100Mo plate is furnace brazed at ~750 oC onto a backing manufactured from a disperse on strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler. This process yields a unique, mechanically and thermally robust target system for high beam power irradiation. Irradiations were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents ≥ 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm2, average) and were found fully intact. Up to 4.7 Ci of 99mTc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations. Results and Conclusion These results demonstrate that our brazed tar-get assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters

    Production and Purification of Tc-99m Pertechnetate from Mo-100 Targets Irradiated in a Nirta Solid Target Station on an IBA Cyclone (R) 18 Cyclotron

    No full text
    Direct production of the highly utilized radioisotope 99mTc is a practical approach to self-sufficiency of supply. A TRIUMF-led consortium developed Mo-100 coating technology to manufacture high current targets and demonstrated the routine production and purification of 99mTc. The aim of this work is to implement these processes on an IBA Nirta target station and Synthera® Extension automated synthesis units

    High power targets for cyclotron production of 99mTc‡

    No full text
    Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is a viable method for the production of clinically useful quantities of 99mTc [2]. Multi-Curie production of 99mTc requires a 100Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of 100Mo targets of both small and large area tar-gets by electrophoretic deposition and subsequent sintering [4]. As part of our efforts to further enhance the performance of molybdenum targets at high beam currents, we have developed a novel target system (initially de-signed for the GE PETtrace cyclotron) based on a pressed and sintered 100Mo plate brazed onto a dispersion-strengthened copper backing. Materials and Methods In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of commercially available 100Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm2 and 250 kN/cm2 is applied by means of a hydraulic press. The pressed molybdenum plate is then sintered in a reducing atmosphere (Ar/2% H2) at 1,700 oC for five hours. The resulting 100Mo plates have about 90–95 % of the molybdenum bulk density. The 100Mo plate is furnace brazed at ~750 oC onto a backing manufactured from a disperse on strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler. This process yields a unique, mechanically and thermally robust target system for high beam power irradiation. Irradiations were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents ≥ 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm2, average) and were found fully intact. Up to 4.7 Ci of 99mTc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations. Results and Conclusion These results demonstrate that our brazed tar-get assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters
    corecore