High power targets for cyclotron production of 99mTc‡

Abstract

Introduction Technetium-99m, supplied in the form of 99Mo/99mTc generators, is the most widely used radioisotope for nuclear medical imaging. The parent isotope 99Mo is currently produced in nuclear reactors. Recent disruptions in the 99Mo supply chain [1] prompted the development of methods for the direct accelerator-based production of 99mTc. Our approach involves the 100Mo(p,2n)99mTc reaction on isotopically enriched molybdenum using small medical cyclotrons (Ep ≤ 20 MeV), which is a viable method for the production of clinically useful quantities of 99mTc [2]. Multi-Curie production of 99mTc requires a 100Mo target capable of dissipating high beam intensities [3]. We have reported the fabrication of 100Mo targets of both small and large area tar-gets by electrophoretic deposition and subsequent sintering [4]. As part of our efforts to further enhance the performance of molybdenum targets at high beam currents, we have developed a novel target system (initially de-signed for the GE PETtrace cyclotron) based on a pressed and sintered 100Mo plate brazed onto a dispersion-strengthened copper backing. Materials and Methods In the first step, a molybdenum plate is produced similarly to the method described in [5] by compacting approximately 1.5 g of commercially available 100Mo powder using a cylindrical tool of 20 mm diameter. A pressure between 25 kN/cm2 and 250 kN/cm2 is applied by means of a hydraulic press. The pressed molybdenum plate is then sintered in a reducing atmosphere (Ar/2% H2) at 1,700 oC for five hours. The resulting 100Mo plates have about 90–95 % of the molybdenum bulk density. The 100Mo plate is furnace brazed at ~750 oC onto a backing manufactured from a disperse on strengthened copper composite (e.g. Glidcop AL-15) using a high temperature silver-copper brazing filler. This process yields a unique, mechanically and thermally robust target system for high beam power irradiation. Irradiations were performed on the GE PETtrace cyclotrons at LHRI and CPDC with 16.5 MeV protons and beam currents ≥ 100 µA. Targets were visually inspected after a 6 hour, 130 µA bombardment (2.73 kW/cm2, average) and were found fully intact. Up to 4.7 Ci of 99mTc have been produced to date. The saturated production yield remained constant between 2 hour and 6 hour irradiations. Results and Conclusion These results demonstrate that our brazed tar-get assembly can withstand high beam intensities for long irradiations without deterioration. Efforts are currently underway to determine maximum performance parameters

    Similar works