297 research outputs found

    Borehole breakout analysis: results from the AND-2A Well

    Get PDF
    To define the present-day stress field in the upper crust and to understand the recent tectonic activity in Antarctica, a study of breakout measurements along AND-2A well was performed. The borehole breakout is an important indicator of horizontal stress orientation and occurs when the stresses around the borehole exceed that required to cause compressive failure of the borehole wall (Bell and Gough, 1979; Zoback et al., 1985, Bell, 1990). The enlargement of the wellbore is caused by the development of intersecting conjugate shear planes that cause pieces of the borehole wall to spall off. Around a vertical borehole, stress concentration is greatest in the direction of the minimum horizontal stress (Shmin), hence, the long axes of borehole breakouts are oriented approximately perpendicular to the maximum horizontal stress orientation (SHmax). The orientation of breakouts along the AND-2A well was measured using acoustic (BHTV) and mechanical (Four-Arm Caliper) tools. Borehole televiewer (BHTV) provides an acoustic "image" of the borehole wall (360 degree coverage) and gives detailed information for investigation of fractures and stress analysis. The four-arm caliper is the oldest technique for borehole breakout identification and it is included in routine dipmeter logs. A quality value has been assigned to the well results in agreement with the World Stress Map quality ranking scheme (Zoback, 1992; Heidback et al., 2010) based mainly on the number, accuracy, and length of breakout measurements. The result is presented as rose diagram of the breakout directions where the length of each peak is proportional to the frequency and the width to the variance of its gaussian curve. We have analyzed the following curves to recognize the breakout: the azimuth of Pad 1 (P1az), the drift azimuth (HAZI), the two calipers with respect to the bit size (BZ) curve and the curve relative to the deviation of the well. The AND-2A Four-Arm Caliper data cover a depth interval between 637 down to 997 mbsl, that corresponds to 360 m of logged interval. We have distinguished breakouts and some washouts only in the interval from 753 to 825 mbsl. From borehole televiewer images, we have data from 398 mbsl down to 1136 mbsl. The BHTV worked well showing a lot of interesting features such as many bedding, lamination and fractures (natural and induced) but poor breakouts. The rare breakouts have also a small size (called protobreakouts) but they are consistent with induced features. Considering the breakout result from caliper and BHTV, the AND-2A borehole is unfortunately classified as D quality. This means that to obtain a reliable active stress field of the area it is necessary to compare this result with other available data

    Historic drought puts the breaks on earthflows in Northern California

    Get PDF
    California's ongoing, unprecedented drought is having profound impacts on the state's resources. Here we assess its impact on 98 deep-seated, slow-moving landslides in Northern California. We used aerial photograph analysis, satellite interferometry, and satellite pixel tracking to measure earthflow velocities spanning 1944–2015 and compared these trends with the Palmer Drought Severity Index, a proxy for soil moisture and pore pressure that governs landslide motion. We find that earthflow velocities reached a historical low in the 2012–2015 drought, but that their deceleration began at the turn of the century in response to a longer-term moisture deficit. Our analysis implies depth-dependent sensitivity of earthflows to climate forcing, with thicker earthflows reflecting longer-term climate trends and thinner earthflows exhibiting less systematic velocity variations. These findings have implications for mechanical-hydrologic interactions that link landslide movement with climate change as well as sediment delivery in the region

    Mechanics and dynamics of X-chromosome pairing at X inactivation

    Get PDF
    At the onset of X-chromosome inactivation, the vital process whereby female mammalian cells equalize X products with respect to males, the X chromosomes are colocalized along their Xic (X-inactivation center) regions. The mechanism inducing recognition and pairing of the X’s remains, though, elusive. Starting from recent discoveries on the molecular factors and on the DNA sequences (the so-called "pairing sites") involved, we dissect the mechanical basis of Xic colocalization by using a statistical physics model. We show that soluble DNA-specific binding molecules, such as those experimentally identified, can be indeed sufficient to induce the spontaneous colocalization of the homologous chromosomes but only when their concentration, or chemical affinity, rises above a threshold value as a consequence of a thermodynamic phase transition. We derive the likelihood of pairing and its probability distribution. Chromosome dynamics has two stages: an initial independent Brownian diffusion followed, after a characteristic time scale, by recognition and pairing. Finally, we investigate the effects of DNA deletion/insertions in the region of pairing sites and compare model predictions to available experimental data

    Downhole Measurements in the AND-2A Borehole, ANDRILL Southern McMurdo Sound Project, Antarctica

    Get PDF
    Under the framework of the ANDRILL Southern McMurdo Sound (SMS) Project successful downhole experiments were conducted in the 1138.54 metre (m)-deep AND-2A borehole. Wireline logs successfully recorded were: magnetic susceptibility, spectral gamma ray, sonic velocity, borehole televiewer, neutron porosity, density, calliper, geochemistry, temperature and dipmeter. A resistivity tool and its backup both failed to operate, thus resistivity data were not collected. Due to hole conditions, logs were collected in several passes from the total depth at ~1138 metres below sea floor (mbsf) to ~230 mbsf, except for some intervals that were either inaccessible due to bridging or were shielded by the drill string. Furthermore, a Vertical Seismic Profile (VSP) was created from ~1000 mbsf up to the sea floor. The first hydraulic fracturing stress measurements in Antarctica were conducted in the interval 1000-1138 mbsf. This extensive data set will allow the SMS Science Team to reach some of the ambitious objectives of the SMS Project. Valuable contributions can be expected for the following topics: cyclicity and climate change, heat flux and fluid flow, seismic stratigraphy in the Victoria Land Basin, and structure and state of the modern crustal stress field.Published57-683.2. Tettonica attivaN/A or not JCRrestricte

    Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars

    Get PDF
    In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the ability to accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augment the Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfire debris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation and reanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric river triggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to the baseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peak discharge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located in the simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchments with anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flow observations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-based tool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weather forecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazard forecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments.</p

    An influenza virus-inspired polymer system for the timed release of siRNA

    Get PDF
    Small interfering RNA silences specific genes by interfering with mRNA translation, and acts to modulate or inhibit specific biological pathways; a therapy that holds great promise in the cure of many diseases. However, the naked small interfering RNA is susceptible to degradation by plasma and tissue nucleases and due to its negative charge unable to cross the cell membrane. Here we report a new polymer carrier designed to mimic the influenza virus escape mechanism from the endosome, followed by a timed release of the small interfering RNA in the cytosol through a self-catalyzed polymer degradation process. Our polymer changes to a negatively charged and non-toxic polymer after the release of small interfering RNA, presenting potential for multiple repeat doses and long-term treatment of diseases

    Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin

    Get PDF
    VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~ (12+2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered
    corecore