7 research outputs found

    Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H<inf>2</inf>S intrusion

    Get PDF
    © 2017 Brodersen, Hammer, Schrameyer, Floytrup, Rasheed, Ralph, Kühl and Pedersen. Anthropogenic activities leading to sediment re-suspension can have adverse effects on adjacent seagrass meadows, owing to reduced light availability and the settling of suspended particles onto seagrass leaves potentially impeding gas exchange with the surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without fine sediment particles, and combined these laboratory measurements with in situ microsensor measurements of tissue O2 and H2 S concentrations. Net photosynthesis rates in leaves with fine sediment particles were down to ∼20% of controls without particles, and the compensation photon irradiance increased from a span of 20–53 to 109–145 µmol photons m−2 s−1. An ∼2.5-fold thicker DBL around leaves with fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf meristematic O2 concentrations of plants exposed to fine sediment particles were lower than in control plants and exhibited long time periods of complete meristematic anoxia during night-time. Insufficient internal aeration resulted in H2 S intrusion into the leaf meristematic tissues when exposed to sediment resuspension even at relatively high night-time water-column O2 concentrations. Fine sediment particles that settle on seagrass leaves thus negatively affect internal tissue aeration and thereby the plants’ resilience against H2 S intrusion

    Transitions, inventories and aspirations. New learners and their longer-term learning goals

    No full text
    In the UK, Personal Development Planning (PDP) is now an important part of a student’s time at university. Its aim is to help students develop skills that will help them at university and in the workplace. However, research has shown that students do not always engage with this element of the curriculum. The aim of this article is to report on an intervention designed to encourage reflection in this area. For this study work was undertaken with a group of new students making the transition to higher education. This article reports on the rationale for making the intervention and the impact, or otherwise, of introducing this cohort to the Myers Briggs Type Indicator (MBTI)

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction

    The Rise of Inclusive Political Institutions and Stronger Property Rights: Time Inconsistency Vs. Opacity.

    No full text
    corecore