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HIGHLIGHTS:

• Sedimentation of fine sediment particles onto seagrass leaves severely hampers the

plants’ performance in both light and darkness, due to inadequate internal plant

aeration and intrusion of phytotoxic H2S.

Anthropogenic activities leading to sediment re-suspension can have adverse effects

on adjacent seagrass meadows, owing to reduced light availability and the settling of

suspended particles onto seagrass leaves potentially impeding gas exchange with the

surrounding water. We used microsensors to determine O2 fluxes and diffusive boundary

layer (DBL) thickness on leaves of the seagrass Zostera muelleri with and without

fine sediment particles, and combined these laboratory measurements with in situ

microsensor measurements of tissue O2 and H2S concentrations. Net photosynthesis

rates in leaves with fine sediment particles were down to ∼20% of controls without

particles, and the compensation photon irradiance increased from a span of 20–53

to 109–145 µmol photons m−2 s−1. An ∼2.5-fold thicker DBL around leaves with

fine sediment particles impeded O2 influx into the leaves during darkness. In situ leaf

meristematic O2 concentrations of plants exposed to fine sediment particles were

lower than in control plants and exhibited long time periods of complete meristematic

anoxia during night-time. Insufficient internal aeration resulted in H2S intrusion into the

leaf meristematic tissues when exposed to sediment resuspension even at relatively

high night-time water-column O2 concentrations. Fine sediment particles that settle on

seagrass leaves thus negatively affect internal tissue aeration and thereby the plants’

resilience against H2S intrusion.
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INTRODUCTION

Anthropogenic activities in coastal waters such as dredging,
point-source outfall discharges and runoff from agricultural
and urban catchments lead to addition and resuspension of
fine particulate material that can have substantial negative
impacts on the health and fitness of seagrasses (Erftemeijer
and Lewis, 2006 and references herein; York et al., 2015;
Chartrand et al., 2016). Dredging operations e.g., during
harbor expansion or construction work can result in direct
removal of plant material and plant burial by suspended
sediment. The indirect effects associated with turbid sediment
plumes, have largely been attributed to reduced light availability
impeding seagrass photosynthesis (e.g., Erftemeijer and Lewis,
2006; York et al., 2015). Dredging-induced seagrass mortality
depends on the nature of the dredging operations including
the duration and intensity (Erftemeijer and Lewis, 2006; York
et al., 2015), but some larger dredging activities result in
widespread sediment plumes that can significantly reduce light
transmission through the water-column (Cutroneo et al., 2013).
Sediment resuspension for prolonged time periods can strongly
affect plant fitness. Even small reductions in light availability
can cause pronounced declines in the distribution and growth
of seagrass meadows (Ralph et al., 2007; Chartrand et al.,
2016). Seagrasses generally have high light requirements and
are therefore typically found in waters, where at least 10% of
incident solar irradiance reaches the seagrass leaf canopy (Duarte,
1991).

Apart from light attenuation, sediment plumes can also result
in the settling of fine sediment particles on seagrass leaves,
especially if the plants are already covered by epiphytes that
have high potential to trap the sediment e.g., due to their
excretion of exopolymers (Pereira et al., 2009; Hamisi et al., 2013).
The effects of such sediment coverage on the performance of
seagrasses remain largely unexplored although such sediment
layers may result in a further substantial reduction in light
availability for the underlying leaves, analogous to the adverse
shading effects of leaf epiphytes (Brodersen et al., 2015a).
Epiphytic microalgae on seagrass leaves have also been shown
to significantly increase the thickness of the diffusive boundary
layer (DBL) (Koch, 1994; Brodersen et al., 2015a), that is a
thin unstirred layer of water, wherein solute and gas exchange
between tissues and the surrounding water occurs by molecular
diffusion, which is a slow process compared to bulk exchange of
solutes/gasses (e.g., Jørgensen and Revsbech, 1985; Hurd, 2000).
The transport time of O2 across the DBL increases with the
square of the DBL thickness, i.e., the diffusion path length, and
increasing DBL thickness will thus affect the O2 exchange of
the seagrass leaf substantially (Jørgensen and Des Marias, 1990;
Hurd, 2000; Larkum et al., 2003; Binzer et al., 2005). During
the day, thick DBLs may result in increased photorespiration
due to tissue accumulation of O2 (e.g., Maberly, 2014), but thick
DBLs can be particularly problematic during darkness, where
seagrasses completely rely on the diffusive supply of O2 from
the surrounding water-column to maintain aerobic respiration
of their leaves and below-ground tissues (Borum et al., 2006;
Pedersen et al., 2016).

Sediment resuspension may also result in decreased water-
column O2 concentrations due to (i) chemical oxidation of
reduced metabolites and metals (Erftemeijer and Lewis, 2006),
or (ii) increased aerobic mineralization of labile organic matter
accumulated in the sediment under anoxic conditions. The
chemical and biological O2 demand of suspended particles
adds to the substantial O2 consumption by dense seagrass
meadows during night-time, potentially resulting in water-
column hypoxia (Greve et al., 2003; Borum et al., 2005, 2006).
Night-time water-column hypoxia can result in inadequate
internal aeration of belowground seagrass tissues resulting in
shrinking or disappearance of the oxic micro-shield generated
by radial O2 loss (ROL) in the rhizosphere (Koren et al.,
2015; Brodersen et al., 2015b). Decreased or absent ROL,
can result in intrusion of gaseous phytotoxic H2S from the
surrounding anoxic sediment into the plant. Once in the
plant, the strong binding capacity of H2S with iron in
cytochrome c oxidase in the mitochondrial respiratory electron
transport chain may inhibit the seagrass metabolism and
lead to increased mortality (Raven and Scrimgeour, 1997;
Holmer and Bondgaard, 2001; Pérez-Pérez et al., 2012; Lamers
et al., 2013). Such H2S intrusion into seagrasses has been
demonstrated both under controlled conditions in the laboratory
(Pedersen et al., 2004) and in a die-off patch in the field
(Borum et al., 2005). Interestingly, seagrasses possess internal
detoxification mechanisms, whereby some tissue H2S is oxidized
to elemental sulfur within the aerenchyma (Holmer and Hasler-
Sheetal, 2014; Hasler-Sheetal and Holmer, 2015). Adequate
internal plant aeration is thus a perquisite for healthy seagrass
meadows.

The O2 partial pressure (pO2) of seagrass tissues is determined
by four main factors: (i) the diffusive O2 flux from the water-
column into the leaves during darkness (Pedersen et al., 2004), (ii)
photosynthetic O2 production during the day (Dennison, 1987;
Fourqurean and Zieman, 1991), (iii) the respiratory demand of
the plant that is strongly affected by the ambient temperature
(Raun and Borum, 2013), and (iv) the combined sediment O2

demand affecting the ROL in the rhizosphere (Pedersen et al.,
1998; Jensen et al., 2005; Borum et al., 2006; Frederiksen and
Glud, 2006).

In the present study, we combined experimental sediment
resuspension experiments with microsensor measurements to
investigate (i) the rates of photosynthesis and respiration,
(ii) the potential role of settled sediment particles on DBL-
impedance of O2 exchange with the water-column, (iii)
the internal O2 status of the meristematic tissue, and (iv)
the meristematic H2S concentrations in the seagrass Zostera
muelleri spp. capricorni. Detailed microsensor measurements
were performed both under controlled laboratory conditions
and in situ, and were coupled to the light, temperature and O2

conditions in the surrounding water-column. We thus tested
the hypotheses that sediment deposits on seagrass leaves lead
to (i) reduced photosynthetic efficiency, owing to reduced light
availability, as well as reduced gas exchange with the surrounding
water column, (ii) reduced internal aeration of below-ground
seagrass tissue, and (iii) intrusion of H2S into the seagrass.
Our data add important ecophysiological information on the
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resilience/sensitivity of seagrasses to environmental disturbances
linked to anthropogenic activities associated with increases in
suspended sediments.

MATERIALS AND METHODS

Seagrass and Sediment Collection
Specimens of Z. muelleri spp. capricorni (Asch.) S.W.L. Jacobs
and marine sediment were collected from shallow waters (<2m
depth) in Narrabeen Lagoon, NSW, Australia in April 22, 2015.
Narrabeen Lagoon is a large (∼2 km2), shallow intermittently
closed lagoon, with a catchment area of ∼55 km2. A plastic
corer with an inner diameter of 6.3 cm was used to sample bulk
sediment cores adjacent to the investigated seagrass meadow.
After sampling, seagrasses and sediment were transported to the
laboratory, where they were kept in constantly aerated seawater
reservoirs (23◦C; salinity = 29; mimicking physicochemical
water-column conditions at the sampling site) prior to further
investigations.

Sediment Sieving
Multiple sieves were used to obtain the fine sediment particle
fraction with <63 µm grain size, henceforth referred to as
silt/clay, from a sheltered area of the lagoon. After sieving, the
obtained silt/clay particles and water were left undisturbed over-
night in enclosed 10 L containers to allow the suspended particles
to resettle. On the following day, the supernatant was carefully
drained off avoiding resuspension, and the silt/clay fraction
was stored in 1 L sample jars for up to 7 days until used in
subsequent experiments. Furthermore, to enable differentiation
between physical effects caused by the grains themselves and
effects mainly driven by microbial activity within the silt/clay,
some of the obtained silt/clay was sterilized by heating it to
120◦C in an oven for 2 h within sealed containers to minimize
evaporation.

Laboratory Measurements
Experimental Setup
Leaf segments from 3 randomly selected Z. muelleri plants
were positioned horizontally in a custom-made flow chamber
(Brodersen et al., 2014). Within the chamber, leaf segments were
fixed onto a polystyrene plate by needles. The cut ends of the
investigated leaf segments were sealed with petroleum jelly prior
to experiments to seal the aerenchyma from the surrounding
water. A constant flow (∼1 cm s−1) of aerated seawater (23◦C,
salinity = 29) was maintained in the flow chamber via a pump
submerged into a seawater reservoir. The applied flow velocity
of ∼1 cm s−1 is in the lower end of field water velocities
(e.g., Gambi et al., 1990; González-Ortiz et al., 2014), but
does resemble water movement especially within dense seagrass
meadows in closed lagoons such as the conditions in Narrabeen
Lagoon. Illumination was provided by a fiber-optic tungsten
halogen lamp fitted with a collimating lens (KL-2500LCD,
Schott GmbH, Germany). The downwelling photon irradiance
(PAR, 400–700 nm) at the leaf surface was measured with a
scalar irradianceminisensor (US-SQS/L,Walz GmbH, Germany)
connected to a calibrated photon irradiance meter (LI-250A,

LI-COR, USA). The leaf segments were illuminated with an
incident photon irradiance of 0, 75, 200, and 500 µmol photons
m−2 s−1. Water-column hypoxia was obtained by continuously
flushing the seawater in the supporting water reservoir with a
mixture of atmospheric air and humidified nitrogen gas. The
O2 concentration of the water reservoir was simultaneously
monitored by a submerged Clark-type O2 microsensor (OX-
10, tip diameter of 10 µm, Unisense A/S, Aarhus, Denmark;
Revsbech, 1989).

O2 Microsensor Measurements
We used Clark-type O2 microsensors (OX-50, tip diameter
of ∼50 µm, detection limit ∼0.3 µM, Unisense A/S, Aarhus,
Denmark; (Revsbech, 1989)) with a fast response time (t90
<0.5 s) and a low stirring sensitivity (<2–3%) to measure
the O2 concentration at and toward the leaf surface. The O2

microsensors were mounted on a motorized micromanipulator
(Unisense A/S, Aarhus, Denmark) and connected to a
microsensor multimeter (Unisense A/S, Aarhus, Denmark)
both interfaced with a PC running dedicated data acquisition
and positioning software (SensorTrace Pro, Unisense A/S,
Aarhus, Denmark). The O2 microsensors were linearly calibrated
from signal readings in 100% air saturated seawater and anoxic
seawater (by N2 flushing and addition of the O2 scavenger
Na2SO3) at experimental temperature and salinity. Prior to
measurements and calibrations, the microsensors were pre-
conditioned with H2S to prevent drifting calibrations when
exposed to H2S during experiments (Brodersen et al., 2015a).
Microsensors were carefully positioned at the leaf tissue surface
(defined as 0 µm distance on figures) by manually operating
the micromanipulator, while observing the leaf tissue surface
and microsensor tip with a boom-stand dissection microscope
(AmScope, Irvine, CA, USA). When changing the downwelling
photon irradiance, steady state O2 conditions at the leaf surface
re-occurred after∼60 min (data not shown). Microprofiles of O2

concentration were measured in vertical increments of 100 µm,
from the leaf tissue surface to 2 mm distance away (which is in
the same order of magnitude as the leaf tissue thickness).

Photosynthesis and Respiration Calculations
O2 fluxes across the leaf tissue surfaces were calculated using
Fick’s first law of diffusion:

JO2
= −D0

∂C

∂Z
(1)

where D0 is the molecular diffusion coefficient of O2 in seawater
at experimental temperature and salinity (2.14× 10−5 cm−2 s−1;
cf. tabulated physical parameters for marine systems available at
www.unisense.com), and ∂C/∂z is the linear O2 concentration
gradient in the DBL. As we introduced a physical barrier to O2

diffusion at the abaxial surface by fixing the leaf onto polystyrene
with a low O2 permeability, we take the flux estimated at the
adaxial side of the seagrass leaf as representative for the net flux
of O2 across the leaf surface, i.e., JO2, tot = JO2, upper-surface in
dark (=respiration) and light (=net photosynthesis; assuming
a photosynthetic quotient of 1mol O2 produced per mol CO2

fixed), respectively.
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The calculated net photosynthesis rates (nmol O2 m
−2 s−1) as

a function of the incident photon irradiance (E; µmol photons
m−2 s−1) were fitted with an exponential saturation model
(Webb et al., 1974) with an added term, R, to account for
respiration (Spilling et al., 2010):

Pn (E) = Pmax

(

1− e
−αE
Pmax

)

+ R (2)

This equation enables estimation of the irradiance at the onset
of photosynthesis saturation as Ek = Pmax/α, where Pmax is the
maximal net photosynthesis rate and α is the initial slope of the
Pn vs. E curve. The compensation photon irradiance, EC, was
determined as the incident photon irradiance at which the leaf
tissue shifted from a net O2 consumption to a net O2 production,
i.e., the photon irradiance where Pn(E)= 0.

Bulk Sediment O2 Uptake
Depth profiles of O2 concentration in the bulk sediment were
obtained as follows. The sediment core was submerged into a∼2
L aquarium, wherein stirring and aeration of the water column
was achieved via a Pasteur pipette connected to an air-pump.
The surface of the sediment was determined with a boom-stand
dissection microscope (AmScope, Irvine, CA, USA) and the O2

microsensors were carefully positioned at the sediment surface
as described above. Microprofiles were performed in vertical
increments of 200 µm down to 2 cm depth, i.e., below the O2

penetration depth. The volume specific O2 consumption rate of
the bulk sediment, Rsed (µmol O2 m

−3 s−1), was calculated as:

Rsed =
JO2

dO2

(3)

where JO2 is the O2 flux at the seawater/sediment interface (µmol
O2 m−2 s−1), i.e., the diffusive oxygen uptake (DOU) of the
sediment as calculated from Equation (1), and dO2 is the O2

penetration depth in the sediment (cm) as shown in Figure S1
(Supplementary Materials).

Potential and Biological O2 Consumption of Sieved

Sediment
The O2 consumption of the fine sediment particles used in
the laboratory as well as in situ was determined using a
slightly modified approach of Pedersen et al. (2011). The O2

consumption was separated into total (OXtot) or biological
(OXbio) O2 demand in order to determine the chemical O2

demand as OXchem = OXtot – OXbio.
The total O2 consumption of the sediment fraction was

determined by mixing 50 mL suspended sediment (<63 µm)
with 950 mL seawater with a salinity of 28. The solution
was immediately transferred into 25 mL glass vials fitted
with 2 glass beads to provide mixing and mounted on a
rotating wheel (8 rpm) in a constant temperature bath (20.0
± 0.5◦C) (Pedersen et al., 2013). The sediment suspension was
incubated for about 1 h (exact times recorded) before the O2

concentration was measured in each vial using a calibrated
sturdy O2 microsensor (OX500; Unisense A/S, Denmark). Vials
with seawater but without suspended sediment served as blanks

enabling calculation of the O2 consumption as µmol O2 m−3

sediment s−1.
The biological O2 consumption was measured on a sediment

suspension, which was initially purged with atmospheric air for
15 min to oxidize reduced metals and sulfide (Raun et al., 2010).
After oxidation, the sediment suspension was transferred into 25
mL glass vials and treated as described above.

In situ Measurements
Experimental Setup
Two patches (∼1m in diameter) of Z. muelleri were enclosed
by custom-made transparent, floating curtains with mixing
provided by submerged pumps to simulate water motion outside
the enclosures (Narrabeen Lagoon, Australia). One enclosure
functioned as a control treatment and the other enclosure as a
silt/clay treatment. In the silt/clay treatment, 3 pulses of 375 mL
silt/clay particles (see above) were added to the water column
per day to mimic a dredging operation. Sediment resuspension
was initiated at the beginning of the experiments (afternoon)
(pulse 1), just before sunrise (pulse 2) and at midday (pulse
3). Measurements were performed on April 17, 2015 (Series 1)
and repeated on April 19, 2015 (Series 2), i.e., there were 27 h
difference between Series 1 and Series 2 measurements. Within
the enclosures, we measured salinity, light, temperature and O2

in the water column during measurements of meristematic tissue
O2 and H2S concentrations. A detailed description of the in situ
measurements is given below.

Internal pO2 and [H2S] Measurements
Similar data acquisition equipment andmicrosensor as described
above were used for the field measurements of internal
O2 partial pressure (pO2) and H2S concentrations ([H2S])
in the meristematic tissue of Z. muelleri over diel cycles.
Internal H2S concentrations were measured with Clark-type
H2S microsensors (H2S-25, tip diameter of ∼25 µm, 90%
response time <10 s, detection limit ∼0.3 µm, Unisense A/S,
Aarhus, Denmark; Jeroschewski et al., 1996; Kühl et al., 1998)
that were linearly calibrated in anoxic, acidic (pH 4) Na2S
solutions of known H2S concentrations (0, 50, and 100 µM).
Within the enclosures, the microsensors were mounted on
micromanipulators that were supported by stabilized aluminum
spears at a water depth of ∼1 m. The O2 and H2S microsensors
were simultaneously inserted into the briefly-exposed shoot base
of the target plants close to the basal leaf meristem, which was
then re-buried ∼2 cm into the sediment to re-establish the
biogeochemical gradients (Pedersen et al., 2004). Positioning of
the O2 microsensors was done by observing the sensor signals
during insertion until a constant signal was recorded (Borum
et al., 2005). The H2S microsensors were inserted via a similar
approach, using a combination of sensor signal responses to light
exposure and positioning the electrodes at approximately the
same depth into the leaf meristem tissue as the O2 microsensors.
The intra-plant O2 and H2S concentrations were measured
simultaneously inside one plant in the control treatment and one
plant in the silt/clay treatment, and then replicated.
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Physical and Chemical Parameters of the

Water-Column
Diel changes in ambient incident photon irradiance
(continuously measured via Odyssey light loggers; Dataflow
Systems, Christchurch, NZ), water-column pO2 (via O2 micro-
optodes; OXF500PT, Pyroscience, Aachen, Germany; connected
to a 4-channel Firesting meter, PyroScience, Germany), and
water-column temperature (via HOBO temperature data loggers;
UA-002-08, Onset Computer Corporation, Bourne, MA, USA)
were recorded over∼24 h within the enclosures. All sensors were
calibrated according to the manufactures instructions, mounted
on a metal spear and positioned at leaf canopy height. Logging
(1 Hz) by all data loggers was synchronized with the logging of
microsensors used for the intra-tissue measurements.

In situ calculations
All microsensors are temperature sensitive (e.g., Kühl and
Revsbech, 2001) and thus the measurements of internal pO2 and
[H2S] obtained by the calibrated O2 and H2S microsensors were
temperature corrected using the following equations (available at
www.unisense.com):

pO2 =
Samb−Z

Sair − Z
P0 e

k(Tcal− Tamb) (4)

where Samb is the sensor signal measured in situ (mV), Sair is
the calibration signal of the sensor determined at known partial
pressure and temperature (e.g., 100% air saturation; in mV), Z is
the zero current of the sensor measured at known partial pressure
and temperature (i.e., 0% air saturation; in mV), P0 is the known
partial pressure used to define Sair (kPa), k is the temperature
coefficient of the respective sensor (∼0.02◦C−1; exact values
for individual sensors can be provided by the manufacturer,
www.unisense.com), Tcal is the known calibration temperature
(◦C), and Tamb is the ambient temperature (◦C) continuously
measured in situ.

[H2S] = (GS+ S0) ek(Tcal− Tamb) (5)

where G is the slope of the calibration curve that represents the
sensitivity of the sensor (µmol L−1 mV−1), S is the signal of
the sensor (mV), S0 is a constant that describes the zero current
(µmol L−1), k is the temperature coefficient of the respective
sensor (∼0.02◦C−1), Tcal is the known calibration temperature
(◦C), and Tamb is the ambient temperature (◦C) continuously
determined in situ.

These final sensor calibrations were done after the in situ
experiments using the temperature data obtained in the
respective enclosures by the submerged HOBO temperature data
loggers (HOBO, Onset Computer Corporation, Bourne, MA,
USA).

Data Analysis
In the following, O2 is quantified as µmol L−1 when in solution
and as kPa when in gas phase. Data obtained under controlled
conditions in the laboratory, i.e., O2 fluxes across the leaf
tissue surface, are thus presented in molar concentrations and
data obtained in situ, i.e., meristematic O2 concentrations and

water-column O2 conditions are given as partial pressures.
Furthermore, all laboratory measurements were performed at
40 and 100% air equilibrium, representing water-column O2

conditions at night- and day-time, respectively. Non-linear curve
fitting was used to estimate the relationship among variables. All
data fitting and analyses were performed inOriginPro (OriginPro
8, OriginLab Corporation, Northampton, MA, USA).

RESULTS

Laboratory Measurements
Sediment and Silt O2 Consumption Rates
To enable comparison of sediment activity, we determined the
O2 demand and characteristics of the added silt/clay particles
(<63 µm) and the bulk sediment without seagrass biomass. The
O2 was depleted within the upper 1.2 mm of the bulk sediment
and the sediment remained anoxic with depth (Figure S1). The
volume-specific O2 consumption rate of the bulk sediment was
estimated to 374 ± 33 µmol O2 m

−3 s−1 (Table 1). In contrast,
the fine sediment particles consumed 1319 ± 6 µmol O2 m−3

s−1 when taking both the biological and chemical O2 demand
into account. The biological O2 demand of the silt/clay particles
was 1254 ± 29 µmol O2 m−3 s−1 resulting in a chemical O2

demand of 65 µmol O2 m
−3 s−1 (Table 1). Hence, the chemical

O2 demand of the fine sediment particles can thus most likely be
neglected.

Net Photosynthesis and Respiration Rates
Net photosynthesis rates increased with increasing incident
photon irradiance for both plants with and without leaf silt/clay-
cover (Figure 1; showing O2 fluxes from/into leaves). Moreover,
net photosynthesis rates were higher in control leaf segments (no
silt/clay added) exposed to hypoxic water conditions, resembling
water-column O2 levels at sunrise, as compared to leaf segments
kept in water at 100% air equilibrium (Table 2). Plants with
leaf silt/clay-cover exhibited net O2 consumption already at an
incident photon irradiance of∼75µmol photons m−2 s−1 owing
to reduced light availability for leaf photosynthesis (Figure 1;
Table 2). Net photosynthesis rates of the control plants were 3
to 5-fold higher under moderate photon irradiance (200 µmol
photons m−2 s−1) as compared to plants with leaf silt/clay-cover

TABLE 1 | Volume specific O2 consumption rates of fine sediment

particles (i.e., silt/clay) and bulk sediment.

Sediment type O2 consumption

(µmol m−3 s−1)

Bulk, sediment (Rsed) 374± 33

Fine sediment particles (Biological O2 demand, OXbio) 1254± 29

Fine sediment particles (Biological and chemical O2

demand, OXtot)

1319± 6

Rates are mean values ± SE; n = 4. Biological O2 demand refers to the O2 consumption

of fine sediment particles oxygenated via 15 min air flushing prior to measurements.

Biological and chemical O2 demand of fine sediment particles refers to the O2

consumption rate of untreated, i.e., not purged with air prior to incubation, fine sediment

particles. 50 mL fine sediment particles were added to 950 mL seawater.
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FIGURE 1 | Vertical O2 concentration profiles measured toward the leaf surface under incident photon irradiances of 0, 75, 200, and 500 µmol photons

m−2 s−1. Red symbols and lines represent leaves with silt/clay-cover; black symbols and lines represent control plants, i.e., leaves without silt/clay-cover. Upper

panels are measurements in water with a reduced O2 level of ∼40% of air equilibrium (mimicking night-time water-column O2 conditions, approximately 8.2 kPa);

Lower panels are measurements in water at 100% air equilibrium (mimicking day-time water-column O2 conditions, 20.6 kPa). Zero depth indicates the leaf surface.

Symbols and error bars represent means ± SE; n = 3–4.

TABLE 2 | Gas exchange measured as the O2 flux across leaf surfaces of plants without (control)- and with fine sediment particles (<63 µm) as a function

of photon irradiance.

Downwelling photon Control With fine sediment particles Control With fine sediment particles

Irradiance 40% air equilibrium 40% air equilibrium 100% air equilibrium 100% air equilibrium

(µmol photons m−2 s−1) (nmol O2 m−2 s−1) (nmol O2 m−2 s−1) (nmol O2 m−2 s−1) (nmol O2 m−2 s−1)

0 −205± 57 −132± 3 −663± 223 −479± 44

75 435± 148 −18± 47 179± 61 −84± 143

200 854± 342 164± 110 571± 274 195± 129

500 746± 143 270± 74 701± 217 481± 266

Positive values denote O2 efflux across the seagrass leaf surface. Rates are mean ± SE; n = 3–4. Note that the relative high standard errors in the silt treatment at 75 µmol photons

m−2 s−1 was due to one of the leaf segments producing O2 via photosynthesis (for further information, please see Figure S2).

(Table 2). During darkness, a constant diffusive O2 influx across
the leaf surfaces of both plants with and without leaf silt/clay-
cover was observed (Figure 1). However, we found a reduction
in the O2 flux into the silt/clay-covered leaves of 28–35% as
compared to leaves without silt/clay-cover (Table 2; measured at
100% and 40% air equilibrium, respectively).

During water-column hypoxia, the leaf silt/clay-layer impeded
the diffusive O2 supply resulting in almost anoxic conditions
at the leaf tissue surface (∼16 µmol O2 L−1) of plants with
leaf silt/clay-cover. This substantially increased the risk of H2S
intrusion into the below-ground tissues during night-time as a
result of inadequate internal aeration (Figure 1). The thickness
of the DBL surrounding the leaves increased from ∼200 µm to

∼500 µm in the presence of the leaf silt/clay layer (Figure 2).
This resulted in a reduction in the O2 influx to the leaves from
484± 133 nmol O2 m

−2 s−1 in plants without leaf silt/clay-cover
to 419 ± 145 nmol O2 m−2 s−1 in plants with an inactivated
leaf silt/clay-layer.When coated with a biologically active silt/clay
layer, leaves exhibited a further reduction of the O2 influx to 395
± 102 nmol O2 m

−2 s−1 (Figure 2).
The silt/clay-cover on seagrass leaves resulted in a pronounced

increase of the plants’ compensation irradiance from 53 ± 7
µmol photons m−2 s−1 for control leaf segments to 145 ± 46
µmol photons m−2 s−1 for leaf segments with silt/clay cover,
both kept in a water column at 100% air equilibrium (Figure 3;
Table 3). In a water column with O2 kept at 40% atmospheric
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FIGURE 2 | Vertical depth profiles of the O2 concentration measured

toward the leaf surface of plants with a microbially active

silt/clay-cover (red symbols and lines), with an inactivated

silt/clay-cover (obtained by pre-heating the added silt/clay to 120◦C in

an oven for 2 h; blue symbols and lines), and without silt/clay-cover

(control plants; black symbols and lines). All measurements were

performed in darkness. Zero depth indicates the leaf surface. The effective

DBL thickness can be estimated by extrapolating the linear O2 concentration

gradient until it intersects with the constant O2 concentration in the overlying

water. The distance from this point into the leaf tissue surface is a measure of

the effective DBL thickness (Jørgensen and Revsbech, 1985). Symbols and

error bars represent means ± SE; n = 4.

equilibrium, the compensation irradiance increased from 20 ±

8 µmol photons m−2 s−1 for control leaf segments to 109
± 47 µmol photons m−2 s−1 for leaf segments with silt/clay
cover (Figure 3; Table 3). The leaf silt/clay-layer effects on plant
photosynthesis and respiration lead to a ∼2.4-fold increase in
the irradiance causing onset of net photosynthesis saturation for
plants with leaf silt/clay-cover as compared to plants without
leaf silt/clay-cover (Table 3), and to a 49–72% reduction of the
leaf surface O2 concentration in darkness for plants with a leaf
silt/clay-cover as compared to plants without a leaf silt/clay-cover
(Table 3).

In situ Measurements and Effects of
Sediment Re-suspension
Diel Changes in the Physical/Chemical Parameters of

the Surrounding Water-Column

The pO2 dynamics in the water-column of the control and
silt/clay treatment showed similar patterns on a diel basis,
with steadily declining pO2 during night-time reaching minimal
water-column O2 conditions around sunrise, followed by a
rapid increase in the water-column pO2 shortly after sunrise
approaching atmospheric saturation (20.6 kPa) or even leading
to water-column supersaturation relative to atmospheric pO2

around midday (Figures 4A,B). Water-column O2 levels within
the enclosures fluctuated substantially during night-time owing
to water bodies with varying O2 content being introduced to the
seagrass meadow from non-vegetated areas within the lagoon

FIGURE 3 | Apparent net photosynthesis rates as a function of downwelling photon irradiance (PAR, 400–700 nm) of plants with leaf silt/clay-cover

(red symbols and lines) and without leaf silt/clay-cover (control plants; black symbols and lines). Rates were calculated for incident photon irradiances of 0,

75, 200, and 500 µmol photons m−2 s−1 and were fitted with an exponential function (Webb et al., 1974) with an added term to account for respiration (Spilling et al.,

2010) (R2
40% AE, control = 0.93; R2

40% AE, silt/clay-cover = 0.98; R2
100% AE, control = 0.99; R2

100% AE, silt/clay-cover = 0.99). The upper panel represents measurements in water kept at 40% air

equilibrium, while the lower panel represents measurements in water kept at 100% air equilibrium. Error bars are ± SE; n = 3–4.
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TABLE 3 | Photosynthetic parameters derived from the light response

curves in Figure 3.

40% of air equilibrium In air equilibrium

Control Fine sediment

particles

Control Fine sediment

particles

α 15±4 3± 1 17± 6 6± 2

Pmax 1028±176 503± 91 1354± 478 1010± 273

R −211±48 −141± 4 −662± 232 −468± 28

EC 20±8 109± 47 53± 7 145± 46

Ek 72±5 174± 46 77± 2 180± 36

[O2], dark 59±14 16± 14 112± 17 57± 21

Including photosynthetic activity, compensation irradiance, onset of photosynthesis

saturation and respiration rates of investigated Zostera muelleri spp. capricorni plants

with- and without (i.e., control plants) fine sediment particles on leaves. All photosynthetic

related parameters were determined at both 40% of air equilibrium and in air equilibrium.

n = 3. Values are mean ± SE. α = initial slope of the net photosynthesis rate vs. incident

photon irradiance; Pmax = maximum rate of net photosynthesis (in nmol O2 m
−2 s−1); R

= the respiration rate (in nmol O2 m
−2 s−1); EC = compensation irradiance (i.e., incident

photon irradiance where the oxygen produced by photosynthesis meets the respiratory

demands) (in µmol photons m−2 s−1); Ek = onset of photosynthesis saturation (in µmol

photons m−2 s−1); [O2 ], dark = the leaf surface O2 concentration measured in darkness

(in µmol L−1), which can be used as an estimate for the internal O2 concentration in

the aerenchymal tissue of the thin seagrass leaves. 40% of air equilibrium mimics natural

conditions in the seagrass meadow during night-time and at sunrise as seen on Figure 4.

Air equilibrium mimics natural conditions during most of the day-time (Figure 4). Values

are calculated/extracted from the fitted exponential saturation function (Webb et al., 1974)

with an added term to account for respiration (Spilling et al., 2010) in Figure 3 (apply to:

α, Pmax , R, Ec, and Ek ) and from the O2 concentration microprofiles in Figure 1 ([O2 ],

dark); and thus all originates from the laboratory experiments.

and/or from the ocean due to tidal water movement. In contrast,
water-column temperature remained relatively constant on a
diel basis but generally decreased from ∼22◦C on the first
measuring day (Series 1) to ∼20◦C at the end of the second
measuring day (Series 2). Minor fluctuations in the water-column
temperature during night-time correlated with the passing of
aerated water bodies as observed in the water-column pO2

measurements (Figures 4A,B). The incident photon irradiance
measured at leaf canopy height followed a typical bell-shaped
diel curve, with minor fluctuations in the control treatment
due to passing cloud cover. This was in strong contrast to the
silt/clay treatment, where we measured substantially reduced
light conditions as compared to the control treatment, especially
in the hours following experimentally manipulated silt/clay re-
suspension (Figures 4A,B). Moreover, a pronounced difference
in the light availability was observed between measuring days
Series 1 and Series 2, where Series 1 represented sunny conditions
and Series 2 represented a cloudy late autumn day at Narrabeen
Lagoon (Figures 4A,B).

In situ Measurements of O2 and H2S in Seagrass

Meristems
The internal, meristematic pO2 of both control plants and
plants experimentally exposed to suspended silt/clay decreased
steadily from early in the afternoon throughout the night.
A minimum internal, meristematic pO2 was reached shortly
after sunrise. Thereafter, a rapid increase in meristematic pO2

occurred as a response to increasing solar irradiance resulting

in photosynthetic O2 production (Figures 4C,D). Control plants
as well as silt/clay-treated plants exhibited lower pO2 relative to
the water-column during night-time with tissue pO2 fluctuations
correlating with changes in water-column pO2 (Figures 4A–D).
A clear discrepancy in the meristematic pO2 between control
plants and leaf silt/clay-treated plants was measured during light-
limitation in the early morning hours (06:30–09:00) (Figure 4C)
with relatively lower pO2 in silt/clay-treated plants indicating a
silt/clay-induced reduction in light availability.

The meristematic below-ground tissues of both control and
silt/clay-treated plants turned anoxic, or severely hypoxic, late
at night. Meristematic pO2 of silt/clay-treated plants reached
anoxia from around 05:00–06:30 in Series 1 and already from
23:30 in Series 2, while the control plants only were exposed
to anoxic conditions in the meristematic tissue for short time
periods (<1 h; Figures 4C,D). Simultaneous measurements of
internal, meristematic H2S concentrations revealed phytotoxic
H2S intrusion into silt/clay-treated plants during night-time
in Series 2 from around 23:30 correlating with the recorded
period of meristematic tissue anoxia (Figures 4C,D). Internal
H2S levels reached a maximum of 8.3 µmol H2S L−1 around
08:00 in the morning and then started to decrease shortly after
sunrise in response to photosynthetic O2 production leading to
disappearance of H2S in themeristem by 10:30. NoH2S intrusion
was detected into the control plants.

Effects of Water Column O2 Levels and Silt/Clay on

Internal O2 Status
During night-time, tissue pO2 was derived from O2 in the
surrounding water diffusing into the leaves and spreading via
aerenchyma to below-ground tissues (Pedersen et al., 1998;
Colmer, 2003; Brodersen et al., 2015a). The critical water column
O2 level was defined as the water column pO2 below which
oxic conditions in the meristematic tissue could no longer be
sustained, and this critical O2 level was estimated by plotting
the internal pO2 determined in situ against water-column pO2

(Figure 5). In Series 1, the meristematic tissue of the silt/clay-
treated plant became anoxic at a water-column pO2 of ∼5.5 kPa
during night-time as compared to ∼8.7 kPa in the control plant
(Figures 5A,C); a tendency that dramatically changed during
prolonged exposure to suspended silt/clay particles (i.e., in Series
2) where the silt/clay-treated plant became anoxic already at
a night-time water-column pO2 of ∼13 kPa as compared to
∼6.4 kPa in the control plant (Figures 5B,D). These in situ
findings aligned well with the lower O2 influx into leaves with
silt/clay-cover, as compared to control leaves, determined in the
controlled laboratory experiments during darkness (Figures 1–3;
Tables 2,3).

The silt/clay-induced shading effects on the intra-plant pO2

during natural light exposure of the seagrass leaf canopy
was evaluated by plotting the in situ meristematic pO2 as
a function of incident photon irradiance (Figure 6) revealing
an ∼45% reduction in meristematic pO2 in plants exposed
to suspended silt/clay as compared to control plants, seen as
a decrease in α, i.e., the slope describing the internal O2

evolution as a function of photon irradiance, from 0.14 to 0.08
(Figure 6).
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FIGURE 4 | In situ measurements of diel changes in the O2 concentration and temperature of the water-column (A,B), the light availability at leaf canopy

height (A,B), and of the O2 partial pressure and H2S concentration in the meristematic tissue of Zostera muelleri plants with and without leaf silt/clay-cover,

respectively (C,D) from Narrabeen Lagoon, NSW, Australia. The O2 and H2S microsensors were inserted into the shoot base close to the basal leaf meristem, which

was buried ∼2 cm into the sediment. The horizontal, dashed line in panels (A,B) corresponds to 100% atmospheric O2 partial pressure. Legends depict the

physical/chemical water-column parameters (A,B) and the chemical species (C,D). Panels (A,C) are from the first measuring day “Series 1” (representing a sunny

day), while panels (B,D) are from the second measuring day “Series 2” (representing a cloudy day). Red arrows show the timing of the fine sediment pulses in the

silt/clay treatment. Measurements are recorded from the exact same plants and therefore represent changes in plant performance as a result of repeated exposure to

sediment re-suspension and deposition of fine sediment particles on seagrass leaves. Note the lost signal from the inserted microsensors in the silt/clay treatment

(C,D).

DISCUSSION

Our results provide strong evidence that silt/clay-cover on
seagrass leaves can have substantial negative effects on the plants’

photosynthetic activity and efficiency, as well as on the night-
time O2 exchange between leaf tissue and the surrounding
water. Reduced internal aeration, and thus decreased below-
ground tissue oxidation capacity, rendered plants with leaf
silt/clay-cover more prone to H2S intrusion even at relatively
high water-column pO2 during night-time. Below, we discuss
in detail the implications of reduced light availability for
photosynthesis owing to silt/clay shading, thicker DBLs,
and the introduction of O2 consumption within the DBL
itself, on internal aeration and whole plant performance of
seagrasses.

Sediment and Silt/Clay Characteristics
We measured an ∼3.4-fold higher volumetric O2 consumption
rate of the fine sediment particles (<63 µm), as compared
to the bulk sediment, indicative of high microbial activity
within the thin silt/clay layer covering the leaf (Table 1).
Microbial O2 respiration was the quantitatively most important
O2 consuming process of the fine sediment particles, while
chemical oxidation only accounted for ∼5% of the total O2

demand (Table 1). Hence, the leaf silt/clay-cover not only
impeded gas and nutrient exchange with the surrounding
water-column owing to the enhanced thickness of the DBL
around the leaves (Figure 2), it also reduced the passive
O2 influx across the silt/clay layer during night-time owing
to high microbial O2 consumption within the silt/clay
layer.
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FIGURE 5 | In situ intra-plant O2 status as a function of the O2 partial

pressure in the surrounding water-column during night-time. The data

were extracted from Figure 4 approximately 2 h after sunset. The gray lines

represent a linear regression and are extrapolated to interception with the

horizontal x-axis, to provide an estimate of the water-column O2 level where

the meristematic tissue at the shoot base becomes anoxic (R2
control, Series 1 =

0.97; R2
control, Series 2 = 0.70; R2

silt/clay-cover, Series 1 = 0.97; R2
silt/clay-cover, Series 2 = 0.94).

Upper panels (A,B) are measurements from control plants (black symbols),

while lower panels (C,D) are measurements from plants with a silt/clay-cover

on the leaves (red symbols).

FIGURE 6 | In situ intra-plant O2 status as a function of incident

photon irradiance (PAR) during daytime. The data were extracted from

Figure 4 at sunrise (Series 1). The intra-plant O2 evolution during the

light-limiting phase of PAR were fitted with a linear function (Gray lines) (R2
control

= 0.95, αcontrol = 0.14; R2
silt/clay-cover = 0.94, αsilt/clay-cover = 0.08). Black symbols

show measurements from control plants, while red symbols show

measurements from plants with a silt/clay-cover on the leaves.

Sediment-Cover Effects on Seagrass
Photosynthesis and O2 Uptake
In light, the apparent net photosynthesis rates of Z. muelleri
leaves with silt/clay-cover were greatly reduced as compared to

control leaves, and the reduction was most pronounced at low
to moderate photon irradiances (Figure 3; Table 2). The reduced
leaf photosynthesis was, most likely, a combined negative result
of lower light availability at the tissue surface and a DBL-impeded
uptake of CO2 from the surrounding water-column, potentially
leading to enhanced photorespiration and thereby reduced
photosynthetic efficiency owing to inorganic carbon limitation
(e.g., Maberly, 2014; Figures 1,3; Table 2). Consequently, the
compensation irradiance of photosynthesis for plants with leaf
silt/clay-cover increased to ∼109 and 145 µmol photons m−2

s−1, as compared to ∼20 and 53 µmol photons m−2 s−1 for
control plants kept in water with O2 at 40% air equilibrium
and 100% air equilibrium, respectively (Table 3). Silt/clay-cover
can thus keep seagrass plants close to their minimum light
requirements on days with poor light conditions. However, in the
present experimental set-up we were unable to clearly separate
the effect of reduced net photosynthesis caused by reduced light
(shading by particles) or increased resistance to CO2 influx
(thicker DBL) from that of O2 consumption by bacteria within
the silt/clay layer.

In darkness, the passive O2 influx was also strongly affected by
the leaf silt/clay-cover, causing a reduction of up to 35% in the
O2 supply (Table 2), which resulted in reduced internal aeration
(Table 3) especially under hypoxic water-column conditions and
thus markedly increased the risk of over-night tissue anoxia.
The lower O2 influx was a combined negative result of an
increased DBL thickness impeding the exchange of O2 with
the surrounding water-column (Figure 2) and high microbial
O2 consumption rates within the leaf silt/clay-cover (Figure 2;
Table 1). Such reduction in the meristematic pO2 lead to a
reduced capability of the silt/clay-covered seagrass plant to aerate
its below-ground tissue during night-time increasing the risk for
phytotoxic H2S intrusion (Pedersen et al., 2004; Borum et al.,
2005; Brodersen et al., 2015b).

Moreover, at high irradiances the silt/clay-induced impeded
gas exchange with the water column may also lead to supra-
optimal internal O2 levels during daytime, potentially resulting
in oxidative stress or damage (Brodersen et al., 2015a). Similarly,
elevated temperatures may lead to a CO2 build-up at night-time
that could result in a negative feedback on respiration, cellular
pH and rates of dark fixation.

Sediment Re-suspension Effects on Plant
Meristematic O2 and H2S Levels
Diel changes in the meristematic O2 content of seagrasses
were mainly driven by irradiance (Figure 4). Experimentally
manipulated silt/clay re-suspension within the enclosure of the
silt/clay treatment, resulted in a pronounced decrease of light
availability for seagrass photosynthesis with up to 3 h of
darkening measured around midday in Series 2 (Figure 4B). The
diminished light conditions resulted in reduced photosynthetic
O2 evolution and thereby reduced meristematic pO2 in Z.
muelleri as seen at sunrise in Series 1 (Figure 4C), thus
correlating with previous findings by Borum et al. (2005). The
photosynthetic efficiency of Z. muelleri measured in situ was
also strongly affected by the silt/clay exposure, with an almost

Frontiers in Plant Science | www.frontiersin.org 10 May 2017 | Volume 8 | Article 657

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Brodersen et al. Dredging Effects on Seagrass Performance

2-fold decrease in the net photosynthetic O2 evolution of plants
exposed to fine sediment particles, as compared to control plants
at equivalent incident photon irradiances (Figure 6), leading to
reduced internal aeration and below-ground tissue oxidation
capacity. This was a result of impeded gas exchange with the
surrounding water-column due to a thicker DBL in the presence
of a sediment cover of leaves leading to lower photosynthetic
efficiencies. The in situ measurements thus strongly correlated
with findings of a 3–5-fold higher compensation irradiance and
an∼2.4-fold increase in the irradiance at onset of photosynthesis
saturation in the laboratory experiments for Z. muelleri leaves
with silt/clay-cover as compared to control leaves (Figure 3;
Table 3).

Critically low meristematic pO2 and/or tissue anoxia were
only measured during night-time and occurred for longer
periods of time, and at higher water-column O2 levels, for Z.
muelleri in the silt/clay treatment as compared to the control
treatment (Figures 4, 5). This suggests reduced O2 supply from
the leaves to the below-ground tissue of Z. muelleri plants
exposed to fine sediment particles. The reduced meristematic
pO2 was caused by (i) the leaf silt/clay-cover induced enhanced
DBL thickness impeding the passive O2 influx into the leaves,
and (ii) high rates of microbial O2 consumption within the
leaf silt/clay layer in line with observations in the laboratory
experiments (Figures 1,2). Lowest meristematic pO2 levels were
recorded around sunrise, followed by a rapid increase in
the meristematic O2 content when sunlight supported leaf
photosynthesis (Figures 4C,D). Moreover, our results clearly
showed that sediment re-suspension did not have substantial
negative effects on the overall O2 conditions within the water-
column (Figures 4A,B) as previously suggested (Erftemeijer and
Lewis, 2006), thus underpinning the critical importance of
silt/clay leaf covers.

Plants with leaf silt/clay-cover exhibited internal meristematic
tissue anoxia at higher water-column pO2 levels (∼45% of air
equilibrium) than plants without leaf silt/clay-cover (∼37% of air
equilibrium), thus correlating with the lower passive O2 influx
into leaves with silt/clay-cover during night-time determined in
the laboratory experiments (Figures 1,3). The silt/clay-induced
negative effect on the intra-plant O2 status was aggravated during
prolonged exposure to fine sediment particles in the water-
column (Figure 5), where the critical water-column O2 level for
Z. muelleri increased to ∼63% air saturation after ∼54 h of
exposure to experimentally manipulated silt/clay re-suspension
(Figure 5). Seagrass plants with leaf silt/clay-cover were thus
more vulnerable to low water-column pO2 at night-time and are
exposed to an increased risk for H2S intrusion.

Proof of H2S intrusion in seagrasses has only been
demonstrated in situ once (Borum et al., 2005) and never
under conditions of such high water column pO2 as in the
silt/clay-treated plants of this study, which was in strong
contrast to the control treatment, where no H2S intrusion
was detected (Figures 4C,D). Anoxic conditions in the roots,
rhizome and basal leaf meristem of seagrasses lead to ceased
radial O2 loss (ROL) from the below-ground tissue into the
immediate rhizosphere and thus resulted in sediment-produced
H2S reaching the below-ground tissue surface (Brodersen et al.,
2015b). If H2S enters the plant e.g., via, the root apical meristems,

the transport of H2S to the basal leaf meristem is relatively
fast as it occurs via gas-phase diffusion in the aerenchyma
(Pedersen et al., 2004) and this may lead to chemical asphyxiation
and thereby enhanced seagrass mortality (Lamers et al., 2013).
Normally, H2S intrusion is prevented by plant-derived ROL
creating oxic sediment microniches that are sustained as long
as the below-ground tissue is supported with sufficient O2 from
the leaf canopy (Pedersen et al., 2004; Brodersen et al., 2015b,
2016). Mature regions of seagrass roots do not leak O2, but
instead possess barriers to ROL, and thereby most likely to H2S
intrusion, composed by Casparian-band like structures in the
root endodermis (Barnabas, 1996; Enstone et al., 2003). This
important anatomical cell-wall modification significantly reduces
the consumption of O2 along the internal diffusion path and
thereby ensures an effective O2 transport to the most distal parts
of the seagrass plant (Colmer, 2003). At sunrise, photosynthetic
O2 evolution in the leaves of the silt/clay-treated plants lead to
enhanced internal meristematic pO2 and thereby re-oxidation of
intruded H2S around 08:00–10:00 in the morning (Figure 4D),
where after the H2S concentration remained below the detection
limit.

Unfortunately, such in situ microsensor measurements
are extremely challenging to obtain as positioning multiple
microsensors simultaneously inside the tissue at the base of
the shoot while “SCUBA diving” is very challenging and time
consuming, and due to, e.g., sensor breakages during night-
time as a result of fish foraging in the investigated seagrass
meadow, as well as, time constrains such as daylight hours
when positioning the sensors. Extreme changes in weather
conditions did not allow us to perform additional replication.
However, our results are very consistent with previous findings
in situ and in the laboratory (e.g., Pedersen et al., 2004;
Borum et al., 2005, 2006), showing H2S intrusion as soon
as the aerenchymal tissue becomes completely anoxic, which
only occurred for longer time periods in the silt/clay-treated
plant during prolonged exposure to sediment re-suspension
(Figures 4, 5). This clearly demonstrates that compromised
photosynthesis as a result of prolonged exposure to sediment
re-suspension and deposition of fine sediment particles on
seagrass leaves can result in inadequate internal tissue aeration
and thereby reduced below-ground tissue oxidation capacity,
which leaves the plant exposed to intrusion of reduced
chemical compounds such as H2S. The intra-plant O2 conditions
during night-time were similar in both the control plant and
silt/clay-exposed plant during Series 1, whereas this changed
completely during Series 2, where the same plants showed a
very different response and the silt/clay-exposed plant became
completely anoxic within a few hours after sunset at high water-
column pO2 simultaneously with the recording of rapid H2S
intrusion (Figures 4, 5).

Settling of fine sediment particles onto seagrass leaves thus
severely hampers the plants’ performance in both light and
darkness, and thereby the health of the seagrass community as
a whole. Silt/clay-induced compromised photosynthesis seemed
to be the most important impediment to seagrass health in
our study. Dredging-induced increased water turbidity therefore
represents a severe threat to seagrass communities due to its
adverse effects on internal O2 status, and therefore can explain
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the often major seagrass die-off events observed during excessive
dredging activities (e.g., York et al., 2015), especially if carried
out during summer-time where seagrasses are more prone to
tissue anoxia owing to higher respiratory needs (Staehr and
Borum, 2011; Raun and Borum, 2013); thus emphasizing the
need for minimizing stress-inducing dredging operations for
seagrass health.

In conclusion, the present study emphasizes the importance
for seagrasses to maintain protective plant-derived oxic
microshields within their rhizosphere, as sediment detoxification
via ROL prevents H2S from accumulating to very high toxic
levels in the sediment and thus prevents H2S from reaching
the tissue surface at the most vulnerable regions of the plants
(Carlson et al., 1994; Brodersen et al., 2015b). Silt/clay-induced
H2S intrusion into Z. muelleri seemed tightly coupled to
prolonged exposure to sediment re-suspension, such as typically
found during harbor dredging activities (York et al., 2015)
and resulting from river plumes (Petus et al., 2014). Leaf
silt/clay-covers thus impeded the plants’ performance and
thereby their resilience toward H2S intrusion. This was as a
result of a combined negative plant response to the reduced light
availability for photosynthesis, thicker DBLs around leaves and
enhanced leaf surface microbial respiration rates, all leading to
inadequate internal aeration and reduced below-ground tissue
oxidation capacity (Figure 4). Turbidity-generating activities
such as dredging operations in close proximity to seagrass
meadows can have strong negative effects on the fitness level and
health of seagrasses through multiple pathways and may lead to
increased seagrass mortality.
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