2,928 research outputs found
Extrasolar Planet Transits Observed at Kitt Peak National Observatory
We obtained J-, H- and JH-band photometry of known extrasolar planet
transiting systems at the 2.1-m Kitt Peak National Observatory Telescope using
the FLAMINGOS infrared camera between October 2008 and October 2011. From the
derived lightcurves we have extracted the mid-transit times, transit depths and
transit durations for these events. The precise mid-transit times obtained help
improve the orbital periods and also constrain transit-time variations of the
systems. For most cases the published system parameters successfully accounted
for our observed lightcurves, but in some instances we derive improved
planetary radii and orbital periods. We complemented our 2.1-m infrared
observations using CCD z'-band and B-band photometry (plus two Hydrogen Alpha
filter observations) obtained with the Kitt Peak Visitor's Center telescope,
and with four H-band transits observed in October 2007 with the NSO's 1.6-m
McMath-Pierce Solar Telescope. The principal highlights of our results are: 1)
our ensemble of J-band planetary radii agree with optical radii, with the
best-fit relation being: (Rp/R*)J = 0.0017 + 0.979 (Rp/R*)optical, 2) We
observe star spot crossings during the transit of WASP-11/HAT-P-10, 3) we
detect star spot crossings by HAT-P-11b (Kepler-3b), thus confirming that the
magnetic evolution of the stellar active regions can be monitored even after
the Kepler mission has ended, and 4) we confirm a grazing transit for
HAT-P-27/WASP-40. In total we present 57 individual transits of 32 known
exoplanet systems.Comment: 33 pages, 6 figures, accepted in Publications of the Astronomical
Society of the Pacifi
CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca(2+)- Permeable Channels and Stomatal Closure
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca(2+) in guard cell ion channel regulation. However, genetic mutants in Ca(2+) sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+)-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+) activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+)-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+)-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+) oscillation experiments revealed that Ca(2+)-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+)-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+)-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling
Vancomycin and Home Health Care
Microbiologic diagnosis before hospital discharge and physician education may limit inappropriate vancomycin use in homecare patients
Enantioselective nickel-catalyzed intramolecular allylic alkenylations enabled by reversible alkenylnickel E/Z isomerization
Enantioselective nickel-catalyzed arylative cyclizations of substrates containing a Z-allylic phosphate tethered to an alkyne are described. These reactions give multisubstituted chiral aza- and carbocycles, and are initiated by the addition of an arylboronic acid to the alkyne, followed by cyclization of the resulting alkenylnickel species onto the allylic phosphate. The reversible E/Z isomerization of the alkenylnickel species is essential for the success of the reactions
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Warrants in underwritten IPOs: The Alternative Investment Market (AIM) experience
We examine the use of warrants as a part of underwriter compensation in IPOs listed on the Alternative Investment Market (AIM) of the London Stock Exchange. Our results show that, though warrant-issuing IPO firms are riskier, they are usually underwritten by reputable underwriters. Firms that are cash constrained at the time of their IPO are more likely to use warrants. Both market volatility and hot issue markets increase the likelihood of firms issuing warrants. We also find that warrant issuers are able to minimise their total costs of going public, even under a very light regulatory setting with regards non-cash compensation. They incur actual costs of 29.1%, but would have incurred greater costs of 33.8% had they not issued warrants to their underwriters. Overall, our results support the cost minimisation explanation of the use of warrants by UK IPO firms
Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets
Magnetization switching in highly anisotropic single-domain ferromagnets has
been previously shown to be qualitatively described by the droplet theory of
metastable decay and simulations of two-dimensional kinetic Ising systems with
periodic boundary conditions. In this article we consider the effects of
boundary conditions on the switching phenomena. A rich range of behaviors is
predicted by droplet theory: the specific mechanism by which switching occurs
depends on the structure of the boundary, the particle size, the temperature,
and the strength of the applied field. The theory predicts the existence of a
peak in the switching field as a function of system size in both systems with
periodic boundary conditions and in systems with boundaries. The size of the
peak is strongly dependent on the boundary effects. It is generally reduced by
open boundary conditions, and in some cases it disappears if the boundaries are
too favorable towards nucleation. However, we also demonstrate conditions under
which the peak remains discernible. This peak arises as a purely dynamic effect
and is not related to the possible existence of multiple domains. We illustrate
the predictions of droplet theory by Monte Carlo simulations of two-dimensional
Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure
Detection and prediction of mean and extreme European summer temperatures with a multimodel ensemble
- …