129 research outputs found

    Studies of stratospheric particulates

    Get PDF
    A sophisticated computer model of polar stratospheric clouds was developed and used to study the properties of ice clouds. The model has recently been extended to investigate nitric acid clouds and ice clouds as well as their interactions with stratospheric gases. The model is now being applied to interpret data collected during recent expeditions to the Antarctic and the Arctic. Some work has also been done to understand the properties of noctilucent clouds and their implications for the chemistry and dynamics of the upper stratosphere

    Simulation of Tropical Biomass Burning

    Get PDF
    The research objectives that were achieved during the course of our studies include the following: (1) Over the last few years, a model has been developed in the Atmospheric Chemistry and Dynamics Branch at Ames Research Center in collaboration with the Physics Department at San Jose State University. It is referred to as the Global/Regional Atmospheric Chemistry Event Simulator (GRACES). Currently, the GRACES model system combines an atmospheric chemistry and transport model, and a regional mesoscale meteorological model. Therefore this system is suitable for simulating the conditions observed by the tropical observation missions, such as the Pacific Exploratory Mission in the 'Tropics (PEM-Tropics), Study of Ozone and Nitrogen oxides Experiment (SONEX), and other periods. Specifically, the research carried out included the evaluation of the behavior of several components of the MM5 (I.e., Meteorological Model 5, version 2) and the GRACES combined modeling system. We initiated research on (a) the ability of the MM5 model to assimilate downward vertical velocities at least as high as the analyses, (b) the ability of the Graces model to incorporate the vertical velocities from MM5, and (c) other factors related to transport patterns required to transport CO in the observed manner. We carried out improved calculations of the transport of tracers for both NASA airborne missions, SONEX and PEM-Tropics. We also made improved source strength estimates fopr isoprene dust, and similar emissions from the Earths surface. This required the use of newly available databases on the Earth's surface and vegetation. We completed atmospheric chemistry simulations of radicals and nitrogen oxide species. We have greatly improved the handling of cumulonimnbus convection by modifing an existing scheme

    Simulation of Tropical Biomass Burning

    Get PDF
    The work proposed was carried out as planned. The work described in this final report formed the basis for a follow-on research grant research grant from NASA Ames Research Center. The research objectives that were achieved during the course of our studies include the following: (1) the evaluation of several components of MM5 (Meteorological Model 5 version 2) and the Global/Regional Atmospheric Chemistry Event Simulator (GRACES) combined modeling system; (2) improved calculations of the transport of tracers for both NASA airborne missions, Study of Ozone and Nitrogen oxides experiment (SONEX) and Pacific Exploratory MIssion in the Tropics (PEM-Tropics); (3) improved source strength estimates for isoprene, dust and similar emissions from the Earth's surface. This required the use of newly available databases on the Earth's surface and vegetation; (4) completed atmospheric chemistry simulations of radicals and nitrogen oxide species; (5)improved the handling of cumulonimbus convection by modifying the existing scheme; (6) identified the role of the African Intertropical Front, using MM5's nesting capability to refine model resolution in crucial areas; modified the MM5 trajectory program to allow it to work much better for a parcel crossing the west/east boundaries

    Atmospheric science

    Get PDF
    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) growth of liquid water drop populations; (2) coalescence; (3) drop breakup; (4) breakup of freezing drops; (5) ice nucleation for large aerosols or bacteria; (6) scavenging of gases, for example, SO2 oxidation; (7) phoretic forces, i.e., thermophoresis versus diffusiophoresis; (8) Rayleigh bursting of drops; (9) charge separation due to collisions of rimed and unrimed ice; (10) charged drop dynamics; (11) growth of particles in other planetary atmospheres; and (12) freezing and liquid-liquid evaporation. The required capabilities and desired hardware for the facility are detailed

    Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs

    Get PDF
    This project has received funding from the European Union‘s Seventh Framework Programme for research, technological development and demonstration as part of the ECO-FCE project under grant agreement No. 311794.peer-reviewedFeed conversion efficiency is a measure of how well an animal converts feed into live weight and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like growth rate (e.g. days to 110 kg—D110) are of high interest for animal breeders, farmers and society due to implications on animal performance, feeding costs and environmental sustainability. The objective of this study was to identify genomic regions associated with FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with estimated breeding values (EBV) for FCR and D110. For FCR, the largest number of associated SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 (12 SNPs). The most prominent genomic regions for D110 were identified on chromosomes 15 (10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 (chromosome 15), respectively. A list of positional genes, closest to significantly associated SNPs, was used to identify enriched pathways and biological functions related to the QTL for both traits. A number of candidate genes were significantly overrepresented in pathways of immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system function, lipid metabolism, and energy production. After resequencing the coding region of selected positional and functional candidate genes, six SNPs were genotyped in a subset of boars. SNPs in PRKDC, SELL, NR2E1 and AKRIC3 showed significant associations with EBVs for FCR/D110. The study revealed a number of chromosomal regions and candidate genes affecting FCR/D110 and pointed to corresponding biological pathways related to lipid metabolism, olfactory reception, and also immunological status.This project has received funding from the European Union‘s Seventh Framework Programme for research, technological development and demonstration as part of the ECO-FCE project under grant agreement No. 311794

    Running-Related Biomechanical Risk Factors for Overuse Injuries in Distance Runners: A Systematic Review Considering Injury Specificity and the Potentials for Future Research

    Get PDF
    Background: Running overuse injuries (ROIs) occur within a complex, partly injury-specific interplay between training loads and extrinsic and intrinsic risk factors. Biomechanical risk factors (BRFs) are related to the individual running style. While BRFs have been reviewed regarding general ROI risk, no systematic review has addressed BRFs for specific ROIs using a standardized methodology. Objective: To identify and evaluate the evidence for the most relevant BRFs for ROIs determined during running and to suggest future research directions. Design: Systematic review considering prospective and retrospective studies. (PROSPERO_ID: 236,832). Data Sources: PubMed. Connected Papers. The search was performed in February 2021. Eligibility Criteria: English language. Studies on participants whose primary sport is running addressing the risk for the seven most common ROIs and at least one kinematic, kinetic (including pressure measurements), or electromyographic BRF. A BRF needed to be identified in at least one prospective or two independent retrospective studies. BRFs needed to be determined during running. Results: Sixty-six articles fulfilled our eligibility criteria. Levels of evidence for specific ROIs ranged from conflicting to moderate evidence. Running populations and methods applied varied considerably between studies. While some BRFs appeared for several ROIs, most BRFs were specific for a particular ROI. Most BRFs derived from lower-extremity joint kinematics and kinetics were located in the frontal and transverse planes of motion. Further, plantar pressure, vertical ground reaction force loading rate and free moment-related parameters were identified as kinetic BRFs. Conclusion: This study offers a comprehensive overview of BRFs for the most common ROIs, which might serve as a starting point to develop ROI-specific risk profiles of individual runners. We identified limited evidence for most ROI-specific risk factors, highlighting the need for performing further high-quality studies in the future. However, consensus on data collection standards (including the quantification of workload and stress tolerance variables and the reporting of injuries) is warranted

    Extending the square root method to account for additive forecast noise in ensemble methods

    Get PDF
    A square root approach is considered for the problem of accounting for model noise in the forecast step of the ensemble Kalman filter (EnKF) and related algorithms. The primary aim is to replace the method of simulated, pseudo-random additive so as to eliminate the associated sampling errors. The core method is based on the analysis step of ensemble square root filters, and consists in the deterministic computation of a transform matrix. The theoretical advantages regarding dynamical consistency are surveyed, applying equally well to the square root method in the analysis step. A fundamental problem due to the limited size of the ensemble subspace is discussed, and novel solutions that complement the core method are suggested and studied. Benchmarks from twin experiments with simple, low-order dynamics indicate improved performance over standard approaches such as additive, simulated noise, and multiplicative inflation

    Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts

    Get PDF
    Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin

    Airborne Observations of Carbon Dioxide and Methane Emission Ratios from the Yosemite Rim Wildfire, California

    Get PDF
    This paper presents airborne in situ measurements of carbon dioxide (CO2) and methane (CH4) downwind of an exceptionally large wildfire, the Rim Fire, near Yosemite, California, during two flights. Data analyses are discussed in terms of emission ratios (ER) and emission factors (EF) and are compared to previous studies. CH4 ERs were 7.5-7.9 parts per billion (ppb) CH4 for every 1 part per million (ppm) of CO2 (ppb CH4 (ppm CO2)(exp.-1)) on 29 August 2013 and 14.2-16.7 ppb CH4 (ppm CO2)(exp. -1) on 10 September 2013. This study measured only CO2 and CH4; however, estimated emission factors (EEFs) are used as rough estimates of EFs of CO2 and CH4 and are in close agreement with EFs reported in previous studies. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. Given the magnitude of the Yosemite Rim wildfire, the impacts it had on regional air quality and the limited sampling of wildfire emissions in the western US to date, this study provides a valuable measurement dataset and may have important implications for forestry and regional air quality management
    • …
    corecore