65 research outputs found

    Analysis on the cryogenic stability and mechanical properties of the LHD helical coils

    Get PDF
    Transient normal-transitions have been observed in the superconducting helical coils of LHD. Propagation of a normal-zone is analyzed with a numerical simulation code that deals with the magnetic diffusion process in a pure aluminum stabilizer. During excitation tests, a number of spike signals are observed in the balance voltage of the helical coils, which seem to be caused by mechanical disturbances. The spike signals are analyzed by applying pulse height analysis and the mechanical properties of the coil windings are investigated

    Analysis of the normal transition event of the LHD helical coils

    Get PDF
    Normal transitions and a subsequent quench were experienced with the pool-cooled helical coils of the Large Helical Device (LHD) during its excitation test. Although the initiated normal zone once started to recover, a disruptive transverse propagation followed and triggered an emergency discharging program. The cryogenic stability of the composite-type superconductor has been studied by sample experiments as well as by numerical calculations. Due to the rather long magnetic diffusion time constant in the pure Al stabilizer, transient stability of the conductor seems to play an important role for driving finite propagation of a normal zone. The cause of the final quench is also discussed from the viewpoint of cooling deterioration due to a possible accumulation of He bubble

    Experiments on Fine-Particle Plasmas for Observation of Critical Phenomena

    Get PDF
    Abstract The particle-motion temperature in a two-dimensional structure was estimated from the time evolution of the speed of a fine particle to be around 0.1 eV with an accuracy of less than 0.1 eV. It was observed that fine particles were isotropically arranged in a planar magnetron plasma, which diffused upward, in three dimensions, without the formation of a void

    Development of NIR Bioimaging Systems

    Get PDF
    Abstract. Fluorescence bioimaging is one of the most important technologies in the biomedical field. The most serious issue concerning current fluorescence bioimaging systems is the use of short wavelength light, UV or VIS, for the excitation of phosphors such as fluorescent proteins or quantum dots. The authors propose a fluorescence bioimaging system excited by near infrared light using rare-earth doped ceramic nanophosphors. The requirements for the nanophosphors are a designed emission scheme under the near infrared excitation, a controlled size between 10 and 200 nm and surface modification of the particles with a biofunctional polymer, which prevents particle agglomeration and non-specific interaction to nontargeting substances and gives them a specific interaction for the targeted objects. The preparation of the bioimaging probe and demonstrative imaging work are reported

    Extension of the operational regime of the LHD towards a deuterium experiment

    Get PDF
    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, Ti and Te, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value β\left\langle \beta \right\rangle . The high β\left\langle \beta \right\rangle regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Automated Enumeration of Immature Granulocytes

    No full text

    IgA腎症患者における血清 Pregnancy associated α2-glycoprotein

    Get PDF
    Serum pregnancy associated α2-glycoprotein levels in 51 IgA nephropathy patients (28 males and 23 females) and 46 healthy subjects (31 males and 15 females) were determined by enzyme-immunoassay. The results showed the serum pregnancy associated α2-glycoprotein levels to be significantly increased in the IgA nephropathy patients over the healthy subjects in both sexes (males: p<0.01, females: p<0.001). Further, in the male patients, the level was significantly increased in those with proteinuria, also there was a significant negative correlation between the concentration and PSP 15 minute value and GFR. On the other hand, in the female patient group there was a significant positive correlation between serum total cholesterol level. On the basis of these findings, we presume that the determination of serum pregnancy associated α2-glycoprotein level may be useful in assuming the prognosis of IgA nephropathy

    Enumeration of Bacterial Cell Numbers and Detection of Significant Bacteriuria by Use of a New Flow Cytometry-Based Device

    No full text
    A new, automated flow cytometry-based urine bacterium analyzer (UBA) was developed. We assessed the UBA for linearity of measurement, reproducibility of results, carryover rate, and correlation of measured results with those determined by urine culture. We also evaluated its ability to screen urine samples for significant bacteriuria. The UBA showed excellent linearity and a minor carryover rate. Results from the UBA were highly reproducible, and in between-run precision assays, the coefficients of variation for the UBA results were smaller than those for the urine culture results. Two hundred seventy-three urine specimens from patients attending the outpatient clinics of two university-based hospitals were examined. The results for the UBA were compared with those for urine culture. The UBA detected significant bacteriuria with a sensitivity of 96.6%, a specificity of 79.9%, a positive predictive value of 57.0%, a negative predictive value of 98.8%, a false-positive rate of 15.8%, a false-negative rate of 0.7%, and an accuracy of 83.5%. These results were comparable to or better than those obtained with previously reported screening procedures. The UBA can perform accurate enumeration of bacterial cells automatically in 90 seconds and can be used for the screening of significant bacteriuria
    corecore