17,338 research outputs found

    Perceptions and Experiences of Drug Use Among Women in Rural North Carolina

    Get PDF
    This study describes perceptions and experiences of drug use among 32 women residing in three non-urban counties in eastern North Carolina. Participants described drug use in their families and communities as pervasive, citing both individual (e.g., depression) and systemic (e.g., few opportunity structures) causal factors. Participants with personal drug use histories described factors that helped them reduce drug use as well as the challenges of maintaining recovery in small communities. Contributions of this research include rural women’s assessment and attribution of drug use problems in both their personal lives and larger communities. Recommendations for rural drug treatment providers are offered

    Regularization Dependence of Running Couplings in Softly Broken Supersymmetry

    Full text link
    We discuss the dependence of running couplings on the choice of regularization method in a general softly-broken N=1 supersymmetric theory. Regularization by dimensional reduction respects supersymmetry, but standard dimensional regularization does not. We find expressions for the differences between running couplings in the modified minimal subtraction schemes of these two regularization methods, to one loop order. We also find the two-loop renormalization group equations for gaugino masses in both schemes, and discuss the application of these results to the Minimal Supersymmetric Standard Model.Comment: 11 pages. v2: Signs of equations (1.2) and (4.2) are fixe

    Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds

    Get PDF
    The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational behaviour, beyond continuous optically detected magnetic resonance monitoring, in parallel with operation as a fluorescent biomarker.Comment: 9 pages, with 5 figure

    The Automorphism Group of a Finite p-Group is Almost Always a p-Group

    Full text link
    Many common finite p-groups admit automorphisms of order coprime to p, and when p is odd, it is reasonably difficult to find finite p-groups whose automorphism group is a p-group. Yet the goal of this paper is to prove that the automorphism group of a finite p-group is almost always a p-group. The asymptotics in our theorem involve fixing any two of the following parameters and letting the third go to infinity: the lower p-length, the number of generators, and p. The proof of this theorem depends on a variety of topics: counting subgroups of a p-group; analyzing the lower p-series of a free group via its connection with the free Lie algebra; counting submodules of a module via Hall polynomials; and using numerical estimates on Gaussian coefficients.Comment: 38 pages, to appear in the Journal of Algebra; improved references, changes in terminolog

    Zone-plate focusing of Bose-Einstein condensates for atom optics and erasable high-speed lithography of quantum electronic components

    Get PDF
    We show that Fresnel zone plates, fabricated in a solid surface, can sharply focus atomic Bose-Einstein condensates that quantum reflect from the surface or pass through the etched holes. The focusing process compresses the condensate by orders of magnitude despite inter-atomic repulsion. Crucially, the focusing dynamics are insensitive to quantum fluctuations of the atom cloud and largely preserve the condensates' coherence, suggesting applications in passive atom-optical elements, for example zone plate lenses that focus atomic matter waves and light at the same point to strengthen their interaction. We explore transmission zone-plate focusing of alkali atoms as a route to erasable and scalable lithography of quantum electronic components in two-dimensional electron gases embedded in semiconductor nanostructures. To do this, we calculate the density profile of a two-dimensional electron gas immediately below a patch of alkali atoms deposited on the surface of the nanostructure by zone-plate focusing. Our results reveal that surface-induced polarization of only a few thousand adsorbed atoms can locally deplete the electron gas. We show that, as a result, the focused deposition of alkali atoms by existing zone plates can create quantum electronic components on the 50 nm scale, comparable to that attainable by ion beam implantation but with minimal damage to either the nanostructure or electron gas.Comment: 13 pages, 7 figure

    Unification Picture in Minimal Supersymmetric SU(5) Model with String Remnants

    Full text link
    The significant heavy threshold effect is found in the supersymmetric SU(5) model with two adjoint scalars, one of which is interpreted as a massive string mode decoupled from the lower-energy particle spectra. This threshold related with the generic mass splitting of the basic adjoint moduli is shown to alter properly the running of gauge couplings, thus giving a natural solution to the string-scale grand unification as prescribed at low energies by LEP precision measurements and minimal particle content. The further symmetry condition of the (top-bottom) Yukawa and gauge coupling superunification at a string scale results in the perfectly working predictions for the top and bottom quark masses in the absence of any large supersymmetric threshold corrections.Comment: published versio

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging

    Yukawa Unification and the Superpartner Mass Scale

    Full text link
    Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent LHC constraints, but natural electroweak symmetry breaking still remains the most powerful motivation for superpartner masses within experimental reach. If naturalness is the wrong criterion then what determines the mass scale of the superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2) dark matter, and (3) precision b-tau Yukawa unification. We show that for an LSP that is a bino-Higgsino admixture, these three requirements lead to an upper-bound on the stop and sbottom masses in the several TeV regime because the threshold correction to the bottom mass at the superpartner scale is required to have a particular size. For tan beta about 50, which is needed for t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the opposite sign of the gluino mass, as is favored by renormalization group scaling. For lower values of tan beta, the top and bottom squarks must be even lighter. Yukawa unification plus dark matter implies that superpartners are likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of any considerations of naturalness. We present a model-independent, bottom-up analysis of the SUSY parameter space that is simultaneously consistent with Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark matter phenomenology that accompanies this Yukawa unification. A large portion of the parameter space predicts that the branching fraction for B_s to mu^+ mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure

    Flavor Unification and Discrete Nonabelian Symmetries

    Full text link
    Grand unified theories with fermions transforming as irreducible representations of a discrete nonabelian flavor symmetry can lead to realistic fermion masses, without requiring very small fundamental parameters. We construct a specific example of a supersymmetric GUT based on the flavor symmetry Δ(75)\Delta(75) --- a subgroup of SU(3)SU(3) --- which can explain the observed quark and lepton masses and mixing angles. The model predicts tanβ25\tan\beta \simeq 2-5 and gives a τ\tau neutrino mass mνMp/GFMGUT2=10m_\nu\simeq M_p/G_F M_{GUT}^2 = 10 eV, with other neutrino masses much lighter. Combined constraints of light quark masses and perturbative unification place flavor symmetry breaking near the GUT scale; it may be possible to probe these extremely high energies by continuing the search for flavor changing neutral currents.Comment: 24 pages, UCSD-PTH-93-30 (uuencoded file; requires epsf.tex, available from this bulletin board

    INSTANTON CALCULATIONS VERSUS EXACT RESULTS IN 4 DIMENSIONAL SUSY GAUGE THEORIES.

    Get PDF
    We relate the non-perturbative exact results in supersymmetry to perturbation theory using several different methods: instanton calculations at weak or strong coupling, a method using gaugino condensation and another method relating strong and weak coupling. This allows many precise numerical checks of the consistency of these methods, especially the amplitude of instanton effects, and of the network of exact solutions in supersymmetry. However, there remain difficulties with the instanton computations at strong coupling.Comment: 17 pages, uses harvmac
    corecore