4,754 research outputs found

    From Property to Person: The Case of Evelyn Hart

    Get PDF

    Estimating efficiency spillovers with state level evidence for manufacturing in the US

    Get PDF
    This is the accepted manuscript version of the paper. The final published version can be found at: http://dx.doi.org/10.1016/j.econlet.2014.01.037Unit specific effects are often used to estimate non-spatial efficiency. We extend such estimators to the case where there is spatial autoregressive dependence and introduce the concept of spillover efficiency. Intuitively, we present an approach to benchmark how successful units are at exporting and importing productive performance to and from other units

    Criminology or Zemiology? Yes, please! on the refusal of choice between false alternatives

    Get PDF
    Buried deep within the zemiological movement and its supportive literature is the implicit assumption that the word zemia, the organising concept around which zemiology is built, simply represents ‘the Greek word for harm’. This interpretation has supported numerous drives to ‘move beyond criminology’ and erect strict borders between the study of crime and harm. However, a deeper, albeit still rather brief, exploration of zemia reveals that it possesses a broader range of meaning than that commonly afforded to it. By beginning to unpick zemia’s semantic genealogy, it appears that the conventional use of the word to support the imposition of false alternatives between criminology and zemiology is untenable. Accordingly, this chapter attempts to foreground a more integrated approach to the study of crime and harm

    Dependence of the 12^{12}C(γ⃗\vec{\gamma},pd) reaction on photon linear polarisation

    Full text link
    The sensitivity of the 12^{12}C(γ⃗,pd)(\vec{\gamma},pd) reaction to photon linear polarisation has been determined at MAMI, giving the first measurement of the reaction for a nucleus heavier than 3^{3}He. Photon asymmetries and cross sections were measured for EγE_{\gamma}=170 to 350 MeV. For EγE_{\gamma} below the Δ\Delta resonance, reactions leaving the residual 9^{9}Be near its ground state show a positive asymmetry of up to 0.3, similar to that observed for 3^{3}He suggesting a similar reaction mechanism for the two nuclei.Comment: 4 pages, 2 figure

    Modelling the effects of patch-plug configuration on the impact performance of patch-repaired composite laminates

    Get PDF
    The patch-plug configuration has been widely used to repair composite structures and restore the structural integrity of damaged composites. In the present research, single-sided CFRP patch-repaired panels, with different patch-plug configurations, are prepared. This is where a circular-shaped damaged area has been removed and a CFRP patch has been adhesively-bonded onto the panel. In some cases, a CFRP plug is inserted into the hole, caused by removal of the damaged area, before the patch is applied. Such patch-repaired panels, and the pristine CFRP panel, are subjected to a low-velocity impact at an energy of 7.5 J. These impacted pristine and repaired panels are then examined using ultrasonic C-scan and optical microscopy to inspect the impact-associated permanent indentation, interlaminar and intralaminar damage. A finite element analysis (FEA) model, which significantly extends a previously validated elastic-plastic (E-P) numerical damage model, has been developed to predict the impact behaviour of the pristine CFRP panel and the various designs of patch-repaired CFRP panels. The comparison between the experimental and numerical results for all the studied cases shows the maximum deviations for the loading response and the damage area are 12% and 15%, respectively. The good agreement between the experimentally-measured impact properties and those predicted using the numerical model demonstrates that the model is a useful design tool

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs

    Full text link
    We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a "gang connector" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure
    • …
    corecore