1,149 research outputs found

    “TAKE PITY OF YOUR TOWN AND OF YOUR PEOPLE”

    Get PDF
    It has been argued that the practice of siege warfare is at the very limit of legality under the terms of International Humanitarian Law.[1] The question addressed in this essay might be rephrased: how do the laws of armed conflict permitsieges to become humanitarian disasters? More precisely, can military doctrine regarding the efficacy of siege warfare operations to induce surrender of besieged forces comply in real world terms with the laws of armed conflict? Since February, 2022 it is alleged that Russian armed forces perpetrated a number of crimes against humanity in Ukraine during sieges of cities such as Mariupol. These alleged crimes include indiscriminate targeting of civilian habitation and attacks on evacuation corridors.[2] In the 1990s, siege warfare in the former Yugoslavia provoked international censure and criminal prosecution of perpetrators. Nevertheless, siege operations in Syria and Kashmir today show no sign of respecting the rights of civilian populations despite international censure. The core legal issue regarding sieges is the principle of distinction between combatants and non-combatant civilians and thus decisions regarding targeting and proportionality. The essay will show that distinction is a recent innovation in International Humanitarian Law and uncertainly embodied in military doctrine. The first part reviews evolving IHL norms pertinent to modern sieges. In the second, the essay examines modern jurisprudence regarding the conduct of siege warfare derived from the International Criminal Tribunal for the Former Yugoslavia (ICTY) prosecution of Major General Stanislav Galić and Major General Dragomir Milosević.[3]    [1] Riordan, K., ‘Shelling, Sniping and Starvation: the Law of Armed Conflict and the Lessons of the Siege of Sarajevo’, Victoria University of Wellington Law Review, 41 (2), p.150; Watts, S., Under Siege: International Humanitarian Law and Security Council Practice Concerning Urban Siege Operations’, Research and Policy Paper, CHE Project, May 2014. [2] https://blogs.icrc.org/law-and-policy/2022/03/17/armed-conflict-in-ukraine-a-recap-of-basic-ihl-rules/ [3] https://www.icty.org/case/gali

    MTHFD1 controls DNA methylation in Arabidopsis.

    Get PDF
    DNA methylation is an epigenetic mechanism that has important functions in transcriptional silencing and is associated with repressive histone methylation (H3K9me). To further investigate silencing mechanisms, we screened a mutagenized Arabidopsis thaliana population for expression of SDCpro-GFP, redundantly controlled by DNA methyltransferases DRM2 and CMT3. Here, we identify the hypomorphic mutant mthfd1-1, carrying a mutation (R175Q) in the cytoplasmic bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase (MTHFD1). Decreased levels of oxidized tetrahydrofolates in mthfd1-1 and lethality of loss-of-function demonstrate the essential enzymatic role of MTHFD1 in Arabidopsis. Accumulation of homocysteine and S-adenosylhomocysteine, genome-wide DNA hypomethylation, loss of H3K9me and transposon derepression indicate that S-adenosylmethionine-dependent transmethylation is inhibited in mthfd1-1. Comparative analysis of DNA methylation revealed that the CMT3 and CMT2 pathways involving positive feedback with H3K9me are mostly affected. Our work highlights the sensitivity of epigenetic networks to one-carbon metabolism due to their common S-adenosylmethionine-dependent transmethylation and has implications for human MTHFD1-associated diseases

    Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

    Get PDF
    HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semi-major axis of 35{60 AU, an eccentricity ? 0.5 and an inclination of 75{85?. The stellar companion has likely strongly in uenced the orbit of the exoplanet and quite possibly explains its high eccentricity.Comment: Accepted to the Astronomical Journal, 6 Pages, 5 Figure

    PALM-3000: Exoplanet Adaptive Optics for the 5 m Hale Telescope

    Get PDF
    We describe and report first results from PALM-3000, the second-generation astronomical adaptive optics (AO) facility for the 5.1 m Hale telescope at Palomar Observatory. PALM-3000 has been engineered for high-contrast imaging and emission spectroscopy of brown dwarfs and large planetary mass bodies at near-infrared wavelengths around bright stars, but also supports general natural guide star use to V ≈ 17. Using its unique 66 × 66 actuator deformable mirror, PALM-3000 has thus far demonstrated residual wavefront errors of 141 nm rms under ~1'' seeing conditions. PALM-3000 can provide phase conjugation correction over a 6."4 × 6."4 working region at λ = 2.2 μm, or full electric field (amplitude and phase) correction over approximately one-half of this field. With optimized back-end instrumentation, PALM-3000 is designed to enable 10^(–7) contrast at 1" angular separation, including post-observation speckle suppression processing. While continued optimization of the AO system is ongoing, we have already successfully commissioned five back-end instruments and begun a major exoplanet characterization survey, Project 1640

    Evidence for an FU Orionis-like Outburst from a Classical T Tauri Star

    Full text link
    We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722). Prior to this outburst, LkHa 188-G4 was classified as a classical T Tauri star on the basis of its optical emission-line spectrum superposed on a K8-type photosphere, and its photometric variability. The mid-infrared spectral index of LkHa 188-G4 indicates a Class II-type object. LkHa 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of > 3 mag on a time scale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (i) an increase in brightness by > 4 mag, (ii) a bright optical/near-infrared reflection nebula appeared, (iii) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra resemble those of late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHa 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified classical T Tauri star LkHa 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.Comment: 14 pages, 11 figures, ApJ accepte

    αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability

    Get PDF
    Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells following duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αIspectrin has moderate affinity for βI-spectrin, while αII-spectrin, expressed in non-erythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for βI-spectrin. It has been hypothesized that this adaptation allows for rapid make-and-break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIβI presented normal hematologic parameters yet showed increased thermostability and their membranes were significantly less deformable: under low shear forces they displayed tumbling behavior, rather than tank-treading. The membrane skeleton is more stable with αIIβI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease), can support the membrane properties required for effective tissue oxygenation in circulation

    Unresolved issues with the assessment of multidecadal global land surface temperature trends

    Get PDF
    This paper documents various unresolved issues in using surface temperature trends as a metric for assessing global and regional climate change. A series of examples ranging from errors caused by temperature measurements at a monitoring station to the undocumented biases in the regionally and globally averaged time series are provided. The issues are poorly understood or documented and relate to micrometeorological impacts due to warm bias in nighttime minimum temperatures, poor siting of the instrumentation, effect of winds as well as surface atmospheric water vapor content on temperature trends, the quantification of uncertainties in the homogenization of surface temperature data, and the influence of land use/land cover (LULC) change on surface temperature trends. Because of the issues presented in this paper related to the analysis of multidecadal surface temperature we recommend that greater, more complete documentation and quantification of these issues be required for all observation stations that are intended to be used in such assessments. This is necessary for confidence in the actual observations of surface temperature variability and long-term trends

    PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula

    Get PDF
    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly rich near--infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.Comment: Accepted to the Astronomical Journal; 21 pages, 11 figures, 6 tables in emulateapj format; v2 fixes typo in abstract; v3 updates status to accepted, adjusts affiliations, adds acknowledgmen

    PTF10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

    Get PDF
    The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local Universe (distance less than 200 Mpc). Here, we report the discovery of PTF10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of Mr = -12.3, red color (g-r = 1.0) and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width H (930 km/s) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to thatof M85OT2006-1, SN2008S, and NGC300OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF10fqs shows some evidence of a broad feature (around 8600A) that may suggest very large velocities (10,000 km/s) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring and statistics (e.g. disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.Comment: 12 pages, 12 figures, Replaced with published versio
    corecore