αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability

Abstract

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells following duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αIspectrin has moderate affinity for βI-spectrin, while αII-spectrin, expressed in non-erythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for βI-spectrin. It has been hypothesized that this adaptation allows for rapid make-and-break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIβI presented normal hematologic parameters yet showed increased thermostability and their membranes were significantly less deformable: under low shear forces they displayed tumbling behavior, rather than tank-treading. The membrane skeleton is more stable with αIIβI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease), can support the membrane properties required for effective tissue oxygenation in circulation

    Similar works