821 research outputs found

    Enhanced Neural Responses to Imagined Primary Rewards Predict Reduced Monetary Temporal Discounting

    Get PDF
    The pervasive tendency to discount the value of future rewards varies considerably across individuals and has important implications for health and well-being. Here, we used fMRI with human participants to examine whether an individual's neural representation of an imagined primary reward predicts the degree to which the value of delayed monetary payments is discounted. Because future rewards can never be experienced at the time of choice, imagining or simulating the benefits of a future reward may play a critical role in decisions between alternatives with either immediate or delayed benefits. We found that enhanced ventromedial prefrontal cortex response during imagined primary reward receipt was correlated with reduced discounting in a separate monetary intertemporal choice task. Furthermore, activity in enhanced ventromedial prefrontal cortex during reward imagination predicted temporal discounting behavior both between- and within-individual decision makers with 62% and 73% mean balanced accuracy, respectively. These results suggest that the quality of reward imagination may impact the degree to which future outcomes are discounted. SIGNIFICANCE STATEMENT We report a novel test of the hypothesis that an important factor influencing the discount rate for future rewards is the quality with which they are imagined or estimated in the present. Previous work has shown that temporal discounting is linked to individual characteristics ranging from general intelligence to the propensity for addiction. We demonstrate that individual differences in a neurobiological measure of primary reward imagination are significantly correlated with discounting rates for future monetary payments. Moreover, our neurobiological measure of imagination can be used to accurately predict choice behavior both between and within individuals. These results suggest that improving reward imagination may be a useful therapeutic target for individuals whose high discount rates promote detrimental behaviors

    Generative AI for Product Design: Getting the Right Design and the Design Right

    Full text link
    Generative AI (GenAI) models excel in their ability to recognize patterns in existing data and generate new and unexpected content. Recent advances have motivated applications of GenAI tools (e.g., Stable Diffusion, ChatGPT) to professional practice across industries, including product design. While these generative capabilities may seem enticing on the surface, certain barriers limit their practical application for real-world use in industry settings. In this position paper, we articulate and situate these barriers within two phases of the product design process, namely "getting the right design" and "getting the design right," and propose a research agenda to stimulate discussions around opportunities for realizing the full potential of GenAI tools in product design

    Visual Elements and Cognitive Biases Influence Interpretations of Trends in Scatter Plots

    Full text link
    Visualizations are common methods to convey information but also increasingly used to spread misinformation. It is therefore important to understand the factors people use to interpret visualizations. In this paper, we focus on factors that influence interpretations of scatter plots, investigating the extent to which common visual aspects of scatter plots (outliers and trend lines) and cognitive biases (people's beliefs) influence perception of correlation trends. We highlight three main findings: outliers skew trend perception but exert less influence than other points; trend lines make trends seem stronger but also mitigate the influence of some outliers; and people's beliefs have a small influence on perceptions of weak, but not strong correlations. From these results we derive guidelines for adjusting visual elements to mitigate the influence of factors that distort interpretations of scatter plots. We explore how these guidelines may generalize to other visualization types and make recommendations for future studies.Comment: 18 pages, 6 figure, 2 table

    Revealing the world of autism through the lens of a camera

    Get PDF
    People with autism spectrum disorder (ASD) show atypical attention to social stimuli [1] and gaze at faces [2] and complex images [3] in unusual ways. But all studies to date are limited by the experimenter’s selected stimuli, which are generally photographs taken by people without autism. What might participants with ASD show us if they were the ones taking the photos? We gave participants a digital camera and analysed the photos they took: images taken by participants with ASD had unusual features and showed strikingly different ways of photographing other people

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe
    • 

    corecore