19 research outputs found
Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments
As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 mu M) and Semliki Forest virus (SFV; EC50 = 0.11 mu M). Obatoclax inhibited viral entry processes in an SFV temperaturesensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.Peer reviewe
The Finnish New Variant of Chlamydia trachomatis with a Single Nucleotide Polymorphism in the 23S rRNA Target Escapes Detection by the Aptima Combo 2 Test
In 2019, more than 200 cases of Chlamydia trachomatis negative/equivocal by the Aptima Combo 2 assay (AC2, target: 23S rRNA) with slightly elevated relative light units (RLUs), but positive by the Aptima Chlamydia trachomatis assay (ACT, target: 16S rRNA) have been detected in Finland To identify the cause of the AC2 CT false-negative specimens, we sequenced parts of the CT 23S rRNA gene in 40 specimens that were AC2 negative/equivocal but ACT positive. A single nucleotide polymorphism (SNP; C1515T in the C. trachomatis 23S rRNA gene) was revealed in 39 AC2/ACT discordant specimens. No decrease in the number of mandatorily notified C. trachomatis cases was observed nationally in Finland in 2010–2019. When RLUs obtained for AC2 negative specimens were retrospectively evaluated in 2011–2019, a continuous increase in the proportion of samples with RLUs 10–19 was observed since 2014, and a slight increase in the proportion of samples with RLUs 20–84 in 2017–2019, indicating that the Finnish new variant of C. trachomatis might have been spreading nationally for several years. This emphasizes that careful surveillance of epidemiology, positivity rate and test performance are mandatory to detect any changes affecting detection of infections
The Finnish New Variant of Chlamydia trachomatis with a Single Nucleotide Polymorphism in the 23S rRNA Target Escapes Detection by the Aptima Combo 2 Test
In 2019, more than 200 cases of Chlamydia trachomatis negative/equivocal by the Aptima Combo 2 assay (AC2, target: 23S rRNA) with slightly elevated relative light units (RLUs), but positive by the Aptima Chlamydia trachomatis assay (ACT, target: 16S rRNA) have been detected in Finland To identify the cause of the AC2 CT false-negative specimens, we sequenced parts of the CT 23S rRNA gene in 40 specimens that were AC2 negative/equivocal but ACT positive. A single nucleotide polymorphism (SNP; C1515T in the C. trachomatis 23S rRNA gene) was revealed in 39 AC2/ACT discordant specimens. No decrease in the number of mandatorily notified C. trachomatis cases was observed nationally in Finland in 2010–2019. When RLUs obtained for AC2 negative specimens were retrospectively evaluated in 2011–2019, a continuous increase in the proportion of samples with RLUs 10–19 was observed since 2014, and a slight increase in the proportion of samples with RLUs 20–84 in 2017–2019, indicating that the Finnish new variant of C. trachomatis might have been spreading nationally for several years. This emphasizes that careful surveillance of epidemiology, positivity rate and test performance are mandatory to detect any changes affecting detection of infections
Genome Sequences of RIGVIR Oncolytic Virotherapy Virus and Five Other Echovirus 7 Isolates
We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.Peer reviewe
Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells
Background: Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the alpha V beta 6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the capsid protein VP1 detected in all studied clinical isolates. However, genetically-modified CV-A9 that lacks the RGD motif (CV-A9-RGDdel) has been shown to be infectious in some cell lines but not in A549, suggesting that RGD-mediated integrin binding is not always essential for efficient entry of CV-A9. Methods: Two cell lines, A549 and SW480, were used in the study. SW480 was the study object for the integrin-independent entry and A549 was used as the control for integrin-dependent entry. Receptor levels were quantitated by cell sorting and quantitative PCR. Antibody blocking assay and siRNA silencing of receptor-encoding genes were used to block virus infection. Peptide phage display library was used to identify peptide binders to CV-A9. Immunofluorescence and confocal microscopy were used to visualize the virus infection in the cells. Results: We investigated the receptor use and early stages of CV-A9 internalization to SW480 human epithelial colon adenocarcinoma cells. Contrary to A549 infection, we showed that both CV-A9 and CV-A9-RGDdel internalized into SW480 cells and that function-blocking anti-alpha V integrin antibodies had no effect on the binding and entry of CV-A9. Whereas siRNA silencing of beta 6 integrin subunit had no influence on virus infection in SW480, silencing of beta 2-microglobulin (beta 2M) inhibited the virus infection in both cell lines. By using a peptide phage display screening, the virus-binding peptide identical to the N-terminal sequence of HSPA5 protein was identified and shown to block the virus infection in both A549 and SW480 cell lines. HSPA5 was also found to co-localize with CV-A9 at the SW480 cell periphery during the early stages of infection by confocal microscopy. Conclusions: The data suggest that while alpha V beta 6 integrin is essential for CV-A9 in A549 cell line, it is not required in SW480 cell line in which beta 2M and HSPA5 alone are sufficient for CV-A9 infection. This suggests that the choice of CV-A9 receptor(s) is dependent on the tissue/cellular environment.Peer reviewe
Obatoclax inhibits alphavirus membrane fusion by neutralizing the acidic environment of endocytic compartments
As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses including chikungunya virus, West Nile virus, influenza virus etc. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins was previously determined to be antiviral against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses like chikungunya virus (EC50 = 0.03 μM) and Semliki Forest virus (SFV) (EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. Neutral red retention assay revealed that obatoclax induces rapid neutralization of the acidic environment of endolysosomal vesicles and thereby, most likely inhibits viral fusion. Characterization of escape mutants revealed that mutation L369I in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins neither inhibited viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses like Zika virus, West Nile virus and yellow fever virus, which require low pH for fusion, but not of pH-independent picornaviruses like coxasackievirus A9, echovirus 6 and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification preventing viral fusion that could be pursued as a potential broad-spectrum antiviral candidate.</p
The Finnish New Variant of Chlamydia trachomatis with a Single Nucleotide Polymorphism in the 23S rRNA Target Escapes Detection by the Aptima Combo 2 Test
In 2019, more than 200 cases of Chlamydia trachomatis negative/equivocal by the Aptima Combo 2 assay (AC2, target: 23S rRNA) with slightly elevated relative light units (RLUs), but positive by the Aptima Chlamydia trachomatis assay (ACT, target: 16S rRNA) have been detected in Finland To identify the cause of the AC2 CT false-negative specimens, we sequenced parts of the CT 23S rRNA gene in 40 specimens that were AC2 negative/equivocal but ACT positive. A single nucleotide polymorphism (SNP; C1515T in the C. trachomatis 23S rRNA gene) was revealed in 39 AC2/ACT discordant specimens. No decrease in the number of mandatorily notified C. trachomatis cases was observed nationally in Finland in 2010-2019. When RLUs obtained for AC2 negative specimens were retrospectively evaluated in 2011-2019, a continuous increase in the proportion of samples with RLUs 10-19 was observed since 2014, and a slight increase in the proportion of samples with RLUs 20-84 in 2017-2019, indicating that the Finnish new variant of C. trachomatis might have been spreading nationally for several years. This emphasizes that careful surveillance of epidemiology, positivity rate and test performance are mandatory to detect any changes affecting detection of infections
Genome sequences of RIGVIR oncolytic virotherapy virus and five other echovirus 7 isolates
We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.</p
Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children
Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl
Physical activity attenuates the influence of FTO variants on obesity risk : a meta-analysis of 218,166 adults and 19,268 children
BACKGROUND: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). METHODS AND FINDINGS: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2)>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (p(interaction) = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. CONCLUSIONS: The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.Peer reviewe