61 research outputs found

    What drives the latitudinal gradient in open-ocean surface dissolved inorganic carbon concentration?

    Get PDF
    Previous work has not led to a clear understanding of the causes of spatial pattern in global surface ocean dissolved inorganic carbon (DIC), which generally increases polewards. Here, we revisit this question by investigating the drivers of observed latitudinal gradients in surface salinity-normalized DIC (nDIC) using the Global Ocean Data Analysis Project version 2 (GLODAPv2) database. We used the database to test three different hypotheses for the driver producing the observed increase in surface nDIC from low to high latitudes. These are (1) sea surface temperature, through its effect on the CO2 system equilibrium constants, (2) salinity-related total alkalinity (TA), and (3) highlatitude upwelling of DIC- and TA-rich deep waters. We find that temperature and upwelling are the two major drivers. TA effects generally oppose the observed gradient, except where higher values are introduced in upwelled waters. Temperature-driven effects explain the majority of the surface nDIC latitudinal gradient (182 of the 223 μmol kg1 increase from the tropics to the high-latitude Southern Ocean). Upwelling, which has not previously been considered as a major driver, additionally drives a substantial latitudinal gradient. Its immediate impact, prior to any induced air-sea CO2 exchange, is to raise Southern Ocean nDIC by 220 μmol kg1 above the average low-latitude value. However, this immediate effect is transitory. The long-term impact of upwelling (brought about by increasing TA), which would persist even if gas exchange were to return the surface ocean to the same CO2 as without upwelling, is to increase nDIC by 74 μmol kg1 above the low-latitude average

    Deep ocean storage of heat and CO2 in the Fram Strait, Arctic Ocean during the last glacial period

    Get PDF
    MME is funded by the Research Council of Norway and the Co-funding of Regional, National, and International Programmes (COFUND) Marie Sklodowska-Curie Actions under the EU Seventh Framework Programme (FP7), project number 274429, and the Research Council of Norway through its Centres of Excellence funding scheme, grant number 223259.The Fram Strait is the only deep gateway between the Arctic Ocean and the Nordic Seas and thus is a key area to study past changes in ocean circulation and the marine carbon cycle. Here, we study deep ocean temperature, δ18O, carbonate chemistry (i.e., carbonate ion concentration, [CO32-]), and nutrient content in the Fram Strait during the late glacial (35,000-19,000 years BP) and the Holocene based on benthic foraminiferal geochemistry and carbon cycle modelling. Our results indicate a thickening of Atlantic water penetrating into the northern Nordic Seas, forming a subsurface Atlantic intermediate water layer reaching to at least ~2600 m water depth during most of the late glacial period. The recirculating Atlantic layer was characterized by relatively high [CO32-] and low δ13C during the late glacial, and provides evidence for a Nordic Seas source to the glacial North Atlantic intermediate water flowing at 2000-3000 m water depth, most likely via the Denmark Strait. In addition, we discuss evidence for enhanced terrestrial carbon input to the Nordic Seas at ~23.5 ka. Comparing our δ13C and qualitative [CO32-] records with results of carbon cycle box modelling suggests that the total terrestrial CO2 release during this carbon input event was low, slow, or directly to the atmosphere.Publisher PDFPeer reviewe

    A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera

    Get PDF
    The work was supported by NERC grants NE/I006176/1 (Gavin L. Foster and Caroline H. Lear), NE/H006273/1 (Gavin L. Foster), NE/I006168/1 and NE/K014137/1 and a Royal Society Research Merit Award (Paul A. Wilson), a NERC Independent Research Fellowship NE/K00901X/1 (Mathis P. Hain) and a NERC studentship (Rosanna Greenop).The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH-Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was ∼37.5‰ during the early and middle Miocene (roughly 23-12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.Publisher PDFPeer reviewe

    Global reorganization of deep-sea circulation and carbon storage after the last ice age

    Get PDF
    Funding information: This work was supported by grants from the National Science Foundation (OCE-2015647 and OCE-2032340 to PAR; OCE- 2032343 to MPH); NERC grant NE/N011716/1 to JWBR and NERC grant NE/M004619/1 to AB.Using new and published marine fossil radiocarbon (14C/C) measurements, a tracer uniquely sensitive to circulation and air-sea gas exchange, we establish several benchmarks for Atlantic, Southern, and Pacific deep-sea circulation and ventilation since the last ice age. We find the most 14C-depleted water in glacial Pacific bottom depths, rather than the mid-depths as they are today, which is best explained by a slowdown in glacial deep-sea overturning in addition to a “flipped” glacial Pacific overturning configuration. These observations cannot be produced by changes in air-sea gas exchange alone, and they underscore the major role for changes in the overturning circulation for glacial deep-sea carbon storage in the vast Pacific abyss and the concomitant drawdown of atmospheric CO2.Publisher PDFPeer reviewe

    Causes of ice age intensification across the Mid-Pleistocene Transition

    Get PDF
    During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ~40,000 (~40 ky) to ~100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ~43 to ~75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.Research was supported by National Environmental Research Council (NERC) Studentship NE/I528626/1 (to T.B.C.); NERC Grant NE/P011381/1 (to T.B.C., M.P.H., G.L.F., E.J.R., and P.A.W.); NERC Fellowships NE/K00901X/1 (to M.P.H.), NE/I006346/1 (to G.L.F. and R.D.P), and NE/H006273/1 (to R.D.P.); Royal Society Wolfson Awards (to G.L.F. and P.A.W.); Australian Research Council Laureate Fellowship FL1201000050 (to E.J.R.); Swiss National Science Foundation Grant PP00P2-144811 (to S.L.J.); ETH Research Grant ETH-04 11-1 (to S.L.J.); European Research Council Consolidator Grant (ERC CoG) Grant 617462 (to H.P.); and NERC UK IODP Grant NE/F00141X/1 (to P.A.W.)

    Glacial/Interglacial and deglacial changes in ocean circulation and their consequences for the global carbon cycle: A model study

    No full text
    This dissertation documents model results that quantitatively address the physical, biological and chemical processes that caused the tight correspondence between the late Pleistocene glacial/interglacial climate cycles and concentration of atmospheric CO2. Central to most current hypotheses for the glacial/interglacial CO2 cycles is the ocean's "biological pump." To quantify the net contribution of distinct ocean changes to glacial CO2 drawdown, and to identify the geochemical changes that determine these net CO2 sensitivities, new diagnostic tools are applied to CYCLOPS carbon cycle model. Based on this analysis, it is inferred that the punctuated saw tooth pattern of the CO2 cycles is best explained by the successive activation of Antarctic, Subantarctic and North Atlantic changes, and that much of the deep ice age ocean was ventilated from the North Atlantic. Due to the preservation of radiocarbon signatures, the last deglaciation offers additional constrains on the state of the glacial ocean, and helps to test hypotheses about ocean circulation changes and carbon redistribution. In this deglacial context, this dissertation presents the first attempt to simulate deglacial radiocarbon anomalies found in some sites of the Indo-Pacific, which have been taken as evidence for the popular hypothesis that the deep glacial ocean stagnated to become a reservoir for the sequestration of CO2 from the atmosphere, and that this reservoir of radiocarbon-deplete carbon was vented during deglaciation. These simulations render a uniquely isolated glacial deep ocean unlikely, and strongly argue that the radiocarbon anomalies record local processes rather than a basin-scale release of deep ocean carbon, such that two episodes of abrupt deglacial atmospheric 14C/C decline demand an alternative explanation. While accounting for the uncertainty in the history radiocarbon production, it is found that observations can be closely matched by deglacial model experiments, with abrupt 14C/C decline caused by the repeated initiation of North Atlantic Deep Water formation instead of Southern Ocean changes that release CO2 to the atmosphere. Overall, the competition between North Atlantic and Southern Ocean over the ventilation of the deep ocean found to be central to the ice age CO2 cycles mirrors the "bipolar seesaw" of warming and cooling among the hemispheres
    corecore