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During the Mid-Pleistocene Transition (MPT; 1,200–800 kya),
Earth’s orbitally paced ice age cycles intensified, lengthened from
∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical.
Testing hypotheses that implicate changing atmospheric CO2 lev-
els as a driver of the MPT has proven difficult with available ob-
servations. Here, we use orbitally resolved, boron isotope CO2

data to show that the glacial to interglacial CO2 difference in-
creased from ∼43 to ∼75 μatm across the MPT, mainly because
of lower glacial CO2 levels. Through carbon cycle modeling, we
attribute this decline primarily to the initiation of substantive
dust-borne iron fertilization of the Southern Ocean during peak
glacial stages. We also observe a twofold steepening of the re-
lationship between sea level and CO2-related climate forcing that
is suggestive of a change in the dynamics that govern ice sheet
stability, such as that expected from the removal of subglacial
regolith or interhemispheric ice sheet phase-locking. We argue that
neither ice sheet dynamics nor CO2 change in isolation can explain
theMPT. Instead, we infer that theMPTwas initiated by a change in
ice sheet dynamics and that longer and deeper post-MPT ice ages
were sustained by carbon cycle feedbacks related to dust fertiliza-
tion of the Southern Ocean as a consequence of larger ice sheets.
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The Mid-Pleistocene Transition (MPT) marks a major shift in
the response of Earth’s climate system to orbital forcing.

During the Early Pleistocene, glacial–interglacial (G-IG) climate
cycles were paced by ∼40,000 y (40 ky) obliquity cycles, whereas
G-IG cycles after the MPT gradually intensified over multiple
obliquity cycles (i.e., 80- to 120-ky periodicity) (1, 2) and ac-
quired a distinctively asymmetric character with gradual glacial
growth and abrupt glacial terminations that were paced by a
combination of obliquity and precession (1). These changes gave
rise to longer, colder, and dustier Late Pleistocene ice ages with
larger continental ice sheets and lower global sea level (SL) (3–5)
(Fig. 1). The MPT occurred in the absence of any significant
change in the pacing or amplitude of orbital forcing, indicating
that it arose from an internal change in the response of the cli-
mate system rather than a change in external forcing (1, 6, 7).
Proposed explanations for the MPT fall into two primary

groups: those that invoke a change in ice sheet dynamics and
those that call on some subtle change in the climate system’s
global energy budget. Two prominent hypotheses posit that ei-
ther removal of the subglacial regolith beginning at about
1,200 ky (8, 9) or phase-locking of Northern and Southern
Hemisphere ice sheets at about 1,000 ky (10) gave rise to deeper
and ultimately longer G-IG climate cycles by allowing for a
greater buildup of ice independent of a change in CO2 radiative
climate forcing (scenario 1 in Fig. 2). Alternatively, it has been

argued that an underlying change in the global carbon cycle
could have triggered the MPT through a decline in ΔRCO2 [i.e.,
the radiative climate forcing exerted by CO2 decline (11–13)
(scenario 2 in Fig. 2)]. The continuous 800-ky-long ice core re-
cord of atmospheric CO2 (i.e., compiled by ref. 14) is well-
correlated to and shares spectral power with orbital-scale
changes in temperature, ice volume, SL, and the oxygen iso-
topic composition of benthic foraminifera (Figs. 1 and 3). State
of the art coupled climate–ice sheet models can simulate climate
cycles that are longer than single obliquity cycles, provided that
mean CO2 concentrations are within certain model-dependent
bounds (15, 16) (e.g., 200–260 μatm). These studies suggest that
the absolute CO2 level attained during rising obliquity (i.e.,
during increasing high-latitude Northern Hemisphere summer
insolation) may be a critical control that determines whether ice
sheets are strictly locked to the ∼40-ky beat of obliquity or sur-
vive for longer periods. Recent work has provided some evidence
for an overall CO2 decline since the MPT (11, 17), supporting
this view. The study by Hönisch et al. (11), in particular, provides
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evidence that CO2 decline was most pronounced during glacial
stages. Here, we build on that work with the aim to resolve the
coupling of CO2 and climate on orbital timescales to address
major unanswered questions regarding the role of CO2 change in
the MPT.
To better quantify the role of CO2 during the MPT, we present

two orbitally resolved, boron isotope-based CO2 records gener-
ated using the calcite tests of surface-dwelling planktonic fora-
minifera from Ocean Drilling Program (ODP) Site 999 in the
Caribbean (Fig. 3 and Figs. S1 and S2). Boron isotopes (δ11B) in

foraminifera have proven to be a reliable indicator of past ocean
pH (18, 19) and with appropriate assumptions regarding a sec-
ond carbonate system parameter (Materials and Methods and Fig.
S3), allow reconstruction of atmospheric CO2 levels. Site
999 likely remained near air–sea CO2 equilibrium through time
(20), and this is further supported by agreement of our data (blue
and red in Figs. 1A and 3) with published low-resolution δ11B-
derived CO2 data from ODP Site 668 in the equatorial Atlantic
(11) (purple squares in Figs. 1A and 3B) and with the ice core
CO2 compilation (14).
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Fig. 1. Climate records across the MPT. (A) CO2 records are shown as follows: black line, ice core compilation (14); blue, our δ11B-based LP260 data; red, our
δ11B-based eMPT data; and purple squares, low-resolution MPT δ11B record of ref. 11 (all with 2σ error bars/envelopes). The range of ice core CO2 mea-
surements (17) from stratigraphically disturbed blue ice and their approximate ages are indicated. (B) SL records, where orange indicates the Red Sea record
(21), dark blue represents Mg/Ca-based deconvolution of deep sea benthic foraminiferal oxygen isotope data (3), and pink shows a record from the Med-
iterranean Sea (4). (C) Dust mass accumulation rate (MAR) in a sub-Antarctic site ODP 1090 on the southern flank of the Agulhas Ridge (24). (D) LR04 benthic
foraminiferal oxygen isotope stack (26). Warm intervals are highlighted by gray bars.
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Fig. 2. Changing relationship between CO2 climate forcing and ice sheet size. Three scenarios (A–C) for the MPT intensification of glacial cycles compared
with observations (D). Reconstructed SL is taken here to reflect continental ice sheet size in relationship to CO2 climate forcing (ΔRCO2) calculated (33) from
our orbitally resolved CO2 data. In all panels, red and blue represent conditions during our two sampling intervals before and after the MPT (i.e., eMPT and
LP260), respectively. The end member scenarios posit (A) a change in ice sheet dynamics, causing ice volume to become more sensitive to unchanged G-IG
climate forcing, and (B) an unchanged sensitivity of ice sheet size to forcing, with glacial intensification driven by additional CO2 drawdown. Neither one of
these two scenarios adequately describes both observed changes of increased ice sheet sensitivity (greater slope) and additional glacial CO2 drawdown (more
negative climate forcing). Here, we argue for a hybrid scenario with a change in ice sheet dynamics (possibly caused by regolith removal of ref. 8 or ice sheet
phase-locking of ref. 10), allowing ice sheets to grow larger and to trigger a positive ice–dust–CO2 feedback that promotes additional glacial intensification. In
D, the regression confidence intervals account for uncertainty in both SL and ΔRCO2 (SI Forcing to SL Relationship), but to avoid clutter, we only display the
regression based on the Mediterranean SL reconstruction (4) and the uncertainty on the slope rather than the individual data points. We refer the reader to SI
Forcing to SL Relationship and Fig. S7 for other SL records and full treatment of data uncertainties.
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Results
Our two datasets span an early portion of the Mid-Pleistocene
Transition (eMPT) from 1,080 to 1,250 kya (n = 51) and for
validation against the ice core CO2 record, the Pleistocene in-
terval from 0 to 260 kya (LP260; n = 59, including 32 recalcu-
lated data points from ref. 18), yielding a similar median
sampling interval of ∼3.5–4.5 ky for both records. Our LP260
CO2 dataset has a confidence interval of ±20 μatm (2σ) and is
offset by a mean of +7 μatm from the ice core CO2 data when
accounting for both CO2 and age uncertainties (21) (Fig. 3B and
SI Methodology). Comparison between our two CO2 records re-
veals that eMPT glacials on average were associated with higher
CO2 levels than LP260 glacials (eMPT: 241 ± 21 μatm vs. LP260:
203 ± 14 μatm; 2σ), whereas interglacial levels were in-
distinguishable (eMPT: 284 ± 17 μatm vs. LP260: 277 ± 18 μatm;
2σ). This analysis uses highest and lowest 25th percentiles of
δ18O values to define “glacial” and “interglacial” subsets of the
data, although this pattern is independent of the thresholds that
we define (Fig. 4 and Fig. S4). Our analysis reproduces the
glacial stage-specific decline in CO2 levels found in ref. 11,
leading to similar reconstructed increases in the glacial to in-
terglacial CO2 difference since the MPT (40 ± 47 and 32 ±
35 μatm based on ref. 11 and our data, respectively) (Fig. 4). The
higher resolution of these datasets allows this approach to yield
useful data about our timespans, despite the relatively large
uncertainty on each individual data point. When analyzed in a
similar way, recent direct measurements of CO2 from a strati-
graphically disturbed section of ∼1-My-old “blue ice” (17) offer a
fully independent test for the two δ11B-based reconstructions
and are consistent with these findings (Fig. 4 and Fig. S4). Thus,
all available evidence suggests that the MPT was associated with
a transition in the global carbon cycle characterized mainly by
enhanced glacial-stage drawdown of CO2.
We evaluate the reconstructed G-IG CO2 change across our

study interval with a carbon cycle model inversion of Southern

Ocean and Atlantic mechanisms thought to have contributed to
the most recent Late Pleistocene G-IG CO2 cycles (22). For this,
we force the CYCLOPS carbon cycle model (23) with ODP
1090 sedimentary iron mass accumulation rates (24), ODP 1094
Ba/Fe ratios (25), and ODP 982/U1313 (Fig. S1) benthic Δδ13C
variations (26, 27) to represent, respectively, (i) sub-Antarctic
dust-borne iron fertilization; (ii) combined changes in polar
Antarctic stratification, nutrient drawdown, and export pro-
duction; and (iii) transitions in the geometry and depth structure
of the Atlantic Meridional Overturning Circulation (AMOC)
(Fig. S5). These mechanisms and their model sensitivities have
been documented elsewhere (23). Here, we invert the model and
the forcing to minimize the mismatch between simulated atmo-
spheric CO2 levels and the ice core CO2 record of the last 800 ky
(residual rms error of 12.3 μatm) (SI Carbon Cycle Modeling) and
then, to predict atmospheric CO2 levels back to 1,500 ky (Fig.
S5) for comparison with our data.
We find that changes in the periodicity of simulated CO2

levels closely match those in the ice core CO2 record, in the
benthic foraminiferal oxygen isotope record, and in our δ11B-
based CO2 reconstruction (Fig. S6). Within the relative age un-
certainty between the model forcing and our δ11B record, we find
that the model explains more than 60% of the variance observed
in our eMPT CO2 reconstruction, in line with model and re-
construction uncertainties. The model inversion does not include
any secular change in the silicate weathering cycle (11) (SI
Carbon Cycle Modeling), so that simulated CO2 change is ex-
clusively related to carbon redistribution within the ocean–at-
mosphere system and associated CaCO3 compensation dynamics
(22, 23).
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Fig. 3. Reconstructed ice age CO2 cycles before and after MPT. (A) Boron
isotope data from ODP 999 (Fig. S1) shown in blue (LP260) and red (eMPT)
along with the LR04 deep sea benthic foraminiferal oxygen isotope stack
(black) (26). (B) CO2 levels calculated from boron isotopes (same colors as
above) compared with ice core (black) (14) and previous low-resolution bo-
ron-derived CO2 data (purple) (11). Probabilistic assessments are shown as
the colored bands, with the probability maximum shown within a dark band
that represents its 95% probability envelope (∼±6 ppm) and a lighter band
that represents the full 95% envelope of the sampled distribution. As illus-
trated by B, Inset, comparison between our (red) eMPT and (blue) LP260
records reveals that glacials on average experienced higher CO2 levels during
eMPT than LP260 (eMPT: 241 ± 21 μatm vs. LP260: 203 ± 14 μatm; 2σ), whereas
interglacial levels were indistinguishable between the two time slices (eMPT:
284 ± 17 μatm vs. LP260: 277 ± 18 μatm; 2σ).
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Fig. 4. CO2 change since the MPT. Quantified from different datasets: bo-
ron isotope data from ODP 999 (this study) and ODP 668 (11), CO2 directly
measured on stratigraphically disturbed ∼1-My-old blue ice from the Allan
Hills (17), and CYCLOPS model inversion (this study). For each dataset, we
quantify the change in (Top) interglacial and (Middle) glacial CO2 level as
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cycles. For this analysis, we define glacial and interglacial subsets of the
datasets based on a 25% cutoff criterion, subsampling the data with the
25% lowest/highest δ18O (marine records) or CO2 (ice core; model). As fur-
ther discussed in SI Quantification of GCO2,

IGCO2, and
IG-GΔCO2, the results

are robust for a wide range of cutoff values (Fig. S4). Thick black bars denote
1σ uncertainty of the estimated CO2 change, while thin black bars denote
the one-sided test of the sign of CO2 change at 95% significance level. We
note that the ODP 668 uncertainties do not encompass the underlying al-
kalinity and seawater boron isotope composition assumptions, which are
included in the uncertainty propagation for our ODP 999 data. The Allan
Hills ice may not capture the full range of CO2 levels (17).
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In good agreement with the δ11B-based CO2 reconstructions
and the ice core CO2 measurements, the model inversion yields
(i) insignificant (−1 ± 3 μatm; 2σ) eMPT to LP260 interglacial
CO2 change and (ii) a −22 ± 5 μatm (2σ) eMPT to LP260 decline
in glacial-stage CO2 levels (Fig. 4 and Fig. S4). In the model,
we can attribute most of the additional glacial CO2 drawdown
to MPT intensification of glacial dust-borne iron fertilization
of biological productivity and nutrient utilization in the Sub-
Antarctic Zone of the Southern Ocean (24, 28–30) (Fig. S5).
AMOC shoaling also seems to have become more prevalent after
∼1,200 ky but contributes less to simulated CO2 change (23). The
model reproduces relatively low reconstructed interglacial CO2
from 400 to 800 ky, because use of ODP 1094 Ba/Fe in the model
inversion results in persistent polar Southern Ocean stratification
as suggested previously (25). Through our eMPT sample interval,
the model reproduces the ∼80-ky CO2 periodicity that is evident
in our eMPT δ11B data (Fig. S6), mainly because of an ∼80-ky
periodicity in eMPT polar Antarctic stratification and nutrient
cycling recorded in ODP 1094 Ba/Fe (25). While all three forc-
ings (iron fertilization, Atlantic circulation, coupled polar Ant-
arctic changes) contribute to the simulated changes in CO2
periodicities that are highly coherent with the MPT change in
rhythm of the climate system, the iron fertilization influence
dominates the MPT intensification of ice age CO2 drawdown
(Fig. S5).

Discussion
MPT intensification of glacial-stage CO2 drawdown is consistent
with stabilization of continental ice sheets during increasing or-
bital obliquity by reduced greenhouse gas forcing, thereby
helping ice sheets to grow larger and for periods longer than one
obliquity cycle (scenario 2 in Fig. 2). However, when we directly
compare changes in SL as a measure for ice volume against CO2
climate forcing (ΔRCO2) from our records (Fig. 2D), we find
that, between eMPT and LP260, ice sheet mass increased pro-
gressively more per CO2 lowering, thereby increasing the SL–
ΔRCO2 slope in Fig. 2. This suggests an increase in ice sheet
sensitivity to CO2 forcing across the MPT, with the caveat that
eMPT may not fully capture pre-MPT conditions, although it
agrees with the longer-term record of Hönisch et al. (11). This
finding is robust, regardless of which SL reconstruction is used
(Fig. S7); in all cases, the SL to ΔRCO2 relationships appear to be
linear, with increasing slopes from eMPT to LP260. The steep-
ening relationship is also evident when regressing δ11B to δ18O
relationships, with both isotope ratios measured on the same
sample material (Fig. S8). Using the SL record with the best
coverage of both intervals, relative SL from the Mediterranean
Sea (4), we estimate 25 ± 3 and 45 ± 5 m of SL lowering for each
1-Wm−2 reduction in radiative forcing during eMPT and LP260,
respectively. Such a pronounced increase in sensitivity implicates
a change in ice sheet dynamics as predicted by the regolith hy-
pothesis (8, 9) or the establishment of marine-based ice sheet
margins in East Antarctica (10) (scenario 1 in Fig. 2).
The observed changes in the SL to ΔRCO2 relationships con-

tain elements of both end member scenarios shown in Fig. 2 A
and B, in which a greater slope is possibly related to changes
internal to the ice sheets (scenario 1) and amplified glacial to
interglacial CO2 climate forcing is linked (this study) to in-
creased glacial dustiness that causes enhanced Southern Ocean
iron fertilization (scenario 2). Therefore, we propose a hybrid
scenario (Fig. 2C) that incorporates both heightened ice sheet
sensitivity to CO2 forcing and dust-driven ocean sequestration of
CO2 to represent the observed climate system change across
the MPT.
First, we propose that—independent of orbital and CO2

forcing—a process internal to the climate system yielded greater
glacial buildup of ice sheets [e.g., regolith removal (8) or ice
sheet phase-locking (10)]. Second, we infer that larger ice sheets

led to increased glacial atmospheric dustiness (31, 32), either
directly through SL lowering or indirectly because of atmo-
spheric cooling, drying, and/or changes in surface winds. This, in
turn, induced glacial iron fertilization of the Sub-Antarctic Zone
of the Southern Ocean, thereby effecting the 20- to 40-μatm
increase in the amplitude of the G-IG CO2 cycles documented
here (Fig. 4) (11). In our hybrid scenario, the positive climate–
dust–CO2 feedback is required to (i) drive additional ice sheet
growth and (ii) stabilize those ice sheets during the critical or-
bital phase of rising obliquity, ensuring the survival of ice sheets
beyond single obliquity cycles. Therefore, regardless of the
mechanism that served as the initial MPT trigger, our findings
further illustrate the exquisite coupling that exists in the Earth
System between climate change, ice sheet mass, and the polar
ocean mechanisms that regulate G-IG CO2 change.

Materials and Methods
Globigerinoides ruber white sensu stricto (300–355 μm) were picked from
sediments from ODP 999A (Fig. S1), and the age model was constructed by
benthic oxygen isotopes from the same samples and X-ray fluorescence
scanning data. Samples were measured for boron isotope composition using
a Thermo Scientific Neptune multicollector inductively coupled plasma mass
spectrometer at the University of Southampton according to methods de-
scribed elsewhere (18). Analytical uncertainty is given by the external re-
producibility of repeat analyses of Japanese Geological Survey Porites coral
standard at the University of Southampton and is typically <0.2‰ (at 95%
confidence). Metal element–calcium ratios (Mg, B, Al) were analyzed using
Thermo Element 2XR inductively coupled plasma mass spectrometer at the
University of Southampton. Here, these data are used to assess adequacy of
clay removal (Al/Ca < 100 μmol/mol) and to generate down core tempera-
ture estimates. CO2 was calculated using a Monte Carlo approach
(10,000 replicates) with estimates of salinity and alkalinity using a flat
probability spanning a generous range (34–37 psu and 2,100–2,500 μmol/kg,
respectively). A normal distribution around proxy data was used for all other
input variables (temperature, pH, δ11Bsw, δ11Bforam) (SI Methodology has full
details). The CO2 record was then probabilistically assessed using a Monte
Carlo approach that considers uncertainties in both age and CO2 values and
that preserves the stratigraphy of the record, which minimizes age un-
certainty in a relative sense between samples (shown as an envelope in Figs.
1 and 3). Each of 2,000 Monte Carlo iterations involved independent random
resampling of each sample within its x and y uncertainty distributions. The
stratigraphic constraint prevents age reversals in this resampling procedure.
Linear interpolation was performed between resampled points, and the
distribution of values thus generated was analyzed per time step for the
modal value and its 95% probability interval as well as the 95% probability
envelope of data in the sampled distribution (using the 2.5th and 97.5th
percentiles). Because uncertainties in both x and y directions are considered,
the record of probability maxima (modes) gives a smoothed representation
of the record, with quantified uncertainties (SI Forcing to SL Relationship).

Inverse carbon cycle modeling was carried out using the CYCLOPS model
(23), with the forward model forcing derived from pertinent paleoceano-
graphic records (25–27) and the forcing scaling parameters inverted to
minimize model misfit with respect to the ice core CO2 record of the last
800 ky. Significant linear correlation with and matching spectral content to
our boron isotope-based CO2 data confirm the skill of the model inversion
(Fig. S6). Detailed statistical analysis is carried out to identify and quantify
changes in absolute glacial and interglacial CO2 as well as the G-IG CO2 range
from the model inversion results, our high-resolution CO2 data, and some pre-
vious datasets (11, 17) that are not well dated or lack the required temporal
resolution for comparison in the time and/or frequency domains. This analysis is
based on estimation of the populationmeans of cumulative probability density of
glacial and interglacial subsamples, which were selected based on either
available benthic foraminiferal δ18O or CO2 rank (Fig. 4). Factorial analysis
of the validated model allows for the mechanistic attribution to sub-
Antarctic iron fertilization of glacial stage-specific CO2 reduction associated
with the MPT interval (Fig. S5, Bottom), which is the pattern that we identified
as common between model and all three empirical datasets. More detailed
descriptions of inverse modeling and model/data cross-validation and statisti-
cal quantification of CO2 change can be found in SI Carbon Cycle Modeling
and SI Quantification of GCO2,

IGCO2, and
IG-GΔCO2, respectively.
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