15 research outputs found

    Leadership As We Know It

    Get PDF
    Leadership as We Know it is a collection of insights into modern leadership compiled by graduate students in Winona State University’s Leadership Education program during the Spring 2019 semester in a course aptly titled, Change Leadership. Each chapter was penned by one of 20 unique class members who offer their vision of leadership based upon their eclectic personal backgrounds and professional experiences, whose fields include athletics, business, education, and more. These diverse narratives offer something for everyone; whether it be a veteran or blossoming leader eager to continue their growth and evolution. Leadership as We Know it provides accounts from seasoned professionals who oversee their own organizational departments as well as emerging leaders just beginning their careers. Throughout these unique stories, clear patterns will emerge for the reader in what it takes to inspire change and provide authentic leadership for followers.https://openriver.winona.edu/leadershipeducationbooks/1003/thumbnail.jp

    Interacting Nanoscale Magnetic Superatom Cluster Arrays in Molybdenum Oxide Bronzes

    No full text
    In this study, we examine several reduced ternary molybdates in the family of yellow rare earth molybdenum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds contain an array of electrically isolated but magnetically interacting multi-atom clusters with composition Mo8O36. These arrayed superatom clusters support a single hole shared among the eight molybdenum atoms in the unit, corresponding to a net spin moment of 1μB, and exhibit magnetic exchange between the units via the MoO4 tetrahedra (containing Mo6+ ions) and the LnO8 cubes (containing Ln3+ ions). The findings presented here expand on the physics of the unusual collective properties of multi-atom clusters and extend the discussion of such assemblages to the rich structural chemistry of molybdenum bronzes

    Interacting nanoscale magnetic superatom cluster arrays in molybdenum oxide bronzes

    No full text
    In this study, we examine several reduced ternary molybdates in the family of yellow rare earth molybdenum bronzes produced by electrochemical synthesis with composition LnMo16O44. These compounds contain an array of electrically isolated but magnetically interacting multi-atom clusters with composition Mo8O36. These arrayed superatom clusters support a single hole shared among the eight molybdenum atoms in the unit, corresponding to a net spin moment of 1μB, and exhibit magnetic exchange between the units via the MoO4 tetrahedra (containing Mo6+ ions) and the LnO8 cubes (containing Ln3+ ions). The findings presented here expand on the physics of the unusual collective properties of multi-atom clusters and extend the discussion of such assemblages to the rich structural chemistry of molybdenum bronzes

    Abnormal Parietal Brain Function in ADHD: Replication and Extension of Previous EEG Beta Asymmetry Findings

    No full text
    Background: Abundant work indicates ADHD abnormal posterior brain structure and function, including abnormal structural and functional asymmetries and reduced corpus callosum size. However, this literature has attracted considerably less research interest than fronto-striatal findings. Objective: To help address this imbalance, the current study replicates and extends our previous work showing abnormal parietal brain function in ADHD adults during the Conner’s continuous performance test (CPT). Method: Our previous study found that ADHD adults had increased rightward EEG beta (16-21 Hz) asymmetry in inferior parietal brain regions during the CPT (p=.00001), and that this metric exhibited a lack of normal correlation (i.e., observed in controls) with beta asymmetry at temporal-parietal regions. We re-tested these effects in a new ADHD sample, and with both new and old samples combined. We additionally examined: a) EEG asymmetry in multiple frequency bands, b) unilateral effects for all asymmetry findings, and c) the association between EEG asymmetry and a battery of cognitive tests. Results: We replicated our original findings, again demonstrating abnormal rightward inferior parietal beta asymmetry in adults with ADHD during the CPT, and again this metric exhibited abnormal reduced correlation to temporal-parietal beta asymmetry. Novel analyses also demonstrated a broader pattern of rightward beta and theta asymmetry across inferior, superior, and temporal-parietal brain regions, and showed that rightward parietal asymmetry in ADHD was atypically associated with multiple cognitive tests. Conclusion: Abnormal increased rightward parietal EEG beta asymmetry is an important feature of ADHD. We speculate that this phenotype may occur with any form of impaired capacity for top-down task-directed control over sensory encoding functions, and that it may reflect associated increases of attentional shifting and compensatory sustained/selective attention
    corecore