354 research outputs found

    Housing and Homicide

    Get PDF
    In the 1990s, homicide and violent crime dropped dramatically in New York City but not in Chicago. No single factor can fully explain the reasons for Chicago's persistently high rates of violence. Our data suggest Chicago's homicide rate stayed high while New York City's dropped because of: 1) Continuing disputes over drug markets by Chicago's institutionalized gangs; 2) Police tactics that fractured gang leadership; and 3) Surprisingly, displacement caused by the demolition of public housing Our studies have concluded that a city's housing policy is one crucial component in any effective effort to reduce violence

    A Video Curriculum for the Listening Comprehension Classes of the Center for Intensive English Language Studies in Islamabad, Pakistan

    Get PDF
    Having worked as a video specialist at the School for International Training in Brattleboro, Vermont, I saw the opportunity to augment the listening comprehension curriculum at the Center for Intensive English Language Studies in Islamabad, Pakistan, with a supplementary curriculum based on the use of video materials while working there as an intern teacher in June - October, 1986. The curriculum was designed in answer to a demand for interesting materials that would aid in fulfilling one of CIELS\u27 curricular goals to further prepare their students, all officials of the Pakistan government, both culturally and academically, for study in the United States. My proposed curriculum called for developing an operations manual to assist the CIELS teachers in running the video equipment, establishing a videocassette library for ready access to materials, developing a series of lesson plans for presenting some of the materials in the library, and conducting two in-service trainings for the CIELS staff on operating the videotape equipment and teaching with video as a medium. In addition to this, I wrote a paper justifying the use of video as a medium for teaching language and explaining the process I went through in writing the Supplementary Video Curriculum for .CIELS Listening Comprehension Classes

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    Spectrum and thermodynamic properties of two-dimensional N=(1,1) super Yang-Mills theory with fundamental matter and a Chern-Simons term

    Get PDF
    We consider N=(1,1) super Yang-Mills theory in 1+1 dimensions with fundamentals at large-N_c. A Chern-Simons term is included to give mass to the adjoint partons. Using the spectrum of the theory, we calculate thermodynamic properties of the system as a function of the temperature and the Yang-Mills coupling. In the large-N_c limit there are two non-communicating sectors, the glueball sector, which we presented previously, and the meson-like sector that we present here. We find that the meson-like sector dominates the thermodynamics. Like the glueball sector, the meson sector has a Hagedorn temperature T_H, and we show that the Hagedorn temperature grows with the coupling. We calculate the temperature and coupling dependence of the free energy for temperatures below T_H. As expected, the free energy for weak coupling and low temperature grows quadratically with the temperature. Also the ratio of the free energies at strong coupling compared to weak coupling, r_{s-w}, for low temperatures grows quadratically with T. In addition, our data suggest that r_{s-w} tends to zero in the continuum limit at low temperatures.Comment: 34 p

    Community next steps for making globally unique identifiers work for biocollections data

    Get PDF
    Biodiversity data is being digitized and made available online at a rapidly increasing rate but current practices typically do not preserve linkages between these data, which impedes interoperation, provenance tracking, and assembly of larger datasets. For data associated with biocollections, the biodiversity community has long recognized that an essential part of establishing and preserving linkages is to apply globally unique identifiers at the point when data are generated in the field and to persist these identifiers downstream, but this is seldom implemented in practice. There has neither been coalescence towards one single identifier solution (as in some other domains), nor even a set of recommended best practices and standards to support multiple identifier schemes sharing consistent responses. In order to further progress towards a broader community consensus, a group of biocollections and informatics experts assembled in Stockholm in October 2014 to discuss community next steps to overcome current roadblocks. The workshop participants divided into four groups focusing on: identifier practice in current field biocollections; identifier application for legacy biocollections; identifiers as applied to biodiversity data records as they are published and made available in semantically marked-up publications; and cross-cutting identifier solutions that bridge across these domains. The main outcome was consensus on key issues, including recognition of differences between legacy and new biocollections processes, the need for identifier metadata profiles that can report information on identifier persistence missions, and the unambiguous indication of the type of object associated with the identifier. Current identifier characteristics are also summarized, and an overview of available schemes and practices is provided

    Toward an Interoperability and Integration Framework to Enable Digital Thread

    Get PDF
    This article discusses ongoing research investigating the feasibility of supporting an interoperability and integration framework to enable the digital thread, or an authoritative source of truth with current technology. The question that initiated this exploratory research was, “Is there current technology that can enable cross-domain digital artifact data sharing needed for the digital thread?” A thorough review and investigation of current state-of-the-art model-based systems engineering was performed by reviewing literature and performing multiple site visits and interviews with organizations at the forefront of digital engineering. After this initial investigation and review, a Semantic Web-enabled framework that would allow data in the thread to be captured, stored, transferred, checked for completeness and consistency, and changed under revision change control management began to be formed. This framework has gone through revisions. This paper reflects the most current demonstration of the framework and its capability of acquiring digital data, and parsing and querying the data using Semantic Web technology to generate a decision table that allows the decision data to be visualized. The article concludes with future demonstrations of the framework to further advance toward a framework that can enable a digital thread in practice

    Paramaterizations of inclusive cross sections for pion production in proton-proton collisions. II. Comparison to new data

    Get PDF
    A set of new, precise data have recently been made available by the NA49 collaboration for charged pion production in proton-proton and proton-Carbon reactions at 158 GeV. The current paper compares this new data to five currently available arithmetic parameterizations. Although a precise fit is not expected, two of the parameterizations do not work very well but the other three are able to provide a moderately good, but not precise fit to the proton-proton data. The best two of these three parameterizations are scaled to the proton-Carbon data and again provide a moderately good, but not precise fit.Comment: 11 pages, 13 figures, Accepted for publication in Physical Review

    Fusion powered human transport to Mars (UWFR94)

    Get PDF
    In the future, two important technological dreams will have become reality: fusion will be a viable power source, and human settlement on Mars will be feasible, desirable, and even necessary. Merging these two concepts is especially attractive for the aerospace engineer because of the high specific power that will be possible with fusion (on the order 10 kW/kg). The UWFR94, a large, fusion-powered, human-transport ship, is designed to transport 100 passengers between earth and Mars in approximately thirty days. This relatively short transit time, which mitigates the need for artificial gravity, is made possible by a Polywell inertial electrostatic fusion reactor capable of 20 kW/kg. The mass of each reactor is 37 metric tons and the fuel used is (3)He-(3)He. The electricity generated drives the propulsion system, composed of nine ion thrusters and 780 tons of xenon propellant. The payload consists of three independent, identical cylinders housing the crew, and has a mass of approximately 400 tons. The aluminum cylinders' radius and length are 3 and 12 meters, respectively, with a thickness of 6 cm (15 cm in the solar flare safe rooms). Atmospheric reentry is avoided by constructing and repairing the UWFR94 in space, and by transferring crew and cargo to shuttle-like vehicles for transportation to the planet upon arrival

    Collaboration Matters: Honey Bee Health as a Transdisciplinary Model for Understanding Real-World Complexity

    Get PDF
    We develop a transdisciplinary deliberative model that moves beyond traditional scientific collaborations to include nonscientists in designing complexity-oriented research. We use the case of declining honey bee health as an exemplar of complex real-world problems requiring cross-disciplinary intervention. Honey bees are important pollinators of the fruits and vegetables we eat. In recent years, these insects have been dying at alarming rates. To prompt the reorientation of research toward the complex reality in which bees face multiple challenges, we came together as a group, including beekeepers, farmers, and scientists. Over a two-year period, we deliberated about how to study the problem of honey bee deaths and conducted field experiments with bee colonies. We show trust and authority to be crucial factors shaping such collaborative research, and we offer a model for structuring collaboration that brings scientists and nonscientists together with the key objects and places of their shared concerns across time

    Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes

    Get PDF
    Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its temporal dynamics are of significant importance, since their effects might change over the course of the decomposition process. Within the TeaComposition initiative, we incubated Green and Rooibos teas at 524 sites across nine biomes. We assessed how macroclimate and atmospheric inorganic N deposition under current and predicted scenarios (RCP 2.6, RCP 8.5) might affect litter mass loss measured after 3 and 12 months. Our study shows that the early to mid-term mass loss at the global scale was affected predominantly by litter quality (explaining 73% and 62% of the total variance after 3 and 12 months, respectively) followed by climate and N deposition. The effects of climate were not litter-specific and became increasingly significant as decomposition progressed, with MAP explaining 2% and MAT 4% of the variation after 12 months of incubation. The effect of N deposition was litter-specific, and significant only for 12-month decomposition of Rooibos tea at the global scale. However, in the temperate biome where atmospheric N deposition rates are relatively high, the 12-month mass loss of Green and Rooibos teas decreased significantly with increasing N deposition, explaining 9.5% and 1.1% of the variance, respectively. The expected changes in macroclimate and N deposition at the global scale by the end of this century are estimated to increase the 12-month mass loss of easily decomposable litter by 1.1-3.5% and of the more stable substrates by 3.8-10.6%, relative to current mass loss. In contrast, expected changes in atmospheric N deposition will decrease the mid-term mass loss of high-quality litter by 1.4-2.2% and that of low-quality litter by 0.9-1.5% in the temperate biome. Our results suggest that projected increases in N deposition may have the capacity to dampen the climate-driven increases in litter decomposition depending on the biome and decomposition stage of substrate.Peer reviewe
    corecore