16 research outputs found
Strong Synergic Growth Inhibition and Death Induction of Cancer Cells by Astragalus membranaceus and Vaccaria hispanica Extract
We present here a new, classification-based screening method for anti-cancer botanical combinations. Using this method, we discovered that the combination of Astragalus membranaceus and Vaccaria hispanica (AV) has strong synergic anti-proliferative and killing effects on cancer cells. We showed that AV induces the hyper activation of proliferation and survival pathways (Akt and ERK1/2) and strongly downregulates the cell cycle control proteins p21 and p27. Moreover, FACS analyses revealed that AV induces accumulation of cells in G2/M phase, supported by accumulation of cyclin A. Taken together, our results suggest that AV interferes with the cell cycle in cancer cells, leading to accumulation in G2/M and apoptosis. Further studies are needed to validate the generalizability of the anti-cancer effect of the AV combination, to fully understand its mechanism of action and to evaluate its potential as a new anti-cancer treatment
Recommended from our members
FOXO3a loss is a frequent early event in high-grade pelvic serous carcinogenesis
Serous ovarian carcinoma is the most lethal gynecological malignancy in Western countries. The molecular events that underlie the development of the disease have been elusive for many years. The recent identification of the fallopian tube secretory epithelial cells (FTSECs) as the cell-of-origin for most cases of this disease has led to studies aimed at elucidating new candidate therapeutic pathways through profiling of normal FTSECs and serous carcinomas. Here, we describe the results of transcriptional profiles that identify the loss of the tumor suppressive transcription factor FOXO3a in a vast majority of high grade serous ovarian carcinomas (HGSOCs). We show that FOXO3a loss is a hallmark of the earliest stages of serous carcinogenesis and occurs both at the DNA, RNA and protein levels. We describe several mechanisms responsible for FOXO3a inactivity, including chromosomal deletion (chromosome 6q21), upregulation of miRNA-182 and destabilization by activated PI3K and MEK. The identification of pathways involved in the pathogenesis of ovarian cancer can advance the management of this disease from being dependant on surgery and cytotoxic chemotherapy alone to the era of targeted therapy. Our data strongly suggest FOXO3a as a possible target for clinical intervention
Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis
In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs) has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID) as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection