120 research outputs found

    Autonomous frequency domain identification: Theory and experiment

    Get PDF
    The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability

    Swarms of Femtosats for Synthetic Aperture Applications

    Get PDF
    The Silicon Wafer Integrated Femtosatellites (SWIFT) Swarm Project presents a new paradigm-shifting definition of spacecraft technology that can enable flight of swarms of fully capable femtosats. One of the most important applications of SWIFT is a distributed aperture array. New swarm Golay array configurations are introduced and shown to dramatically increase the effective diameter derived from optical performance metrics. A system cost analysis based on this comparison justifies deploying a large number of spacecraft for sparse aperture applications

    Control of micromachined deformable mirrors

    Get PDF
    A micromachined deformable mirror with pixelated electrostatic actuators is proposed. The paper begins with a physical description of the proposed mirror. Then a mathematical model in the form of a nonlinear partial differential equation describing the mirror surface deformations is derived. This model is used to derive the required voltages for the actuators to achieve a specified static deformation of the mirror surface. This is followed by the derivation of a static nonlinear feedback controller for achieving noninteracting actuation. Then the structure for a complete control system for wavefront correction is proposed. The paper concludes with a discussion of the physical implementation of the proposed control system

    Swarm Keeping Strategies for Spacecraft under J_2 and Atmospheric Drag Perturbations

    Get PDF
    This paper presents several new open-loop guidance methods for spacecraft swarms composed of hundreds to thousands of agents with each spacecraft having modest capabilities. These methods have three main goals: preventing relative drift of the swarm, preventing collisions within the swarm, and minimizing the propellant used throughout the mission. The development of these methods progresses by eliminating drift using the Hill-Clohessy-Wiltshire equations, removing drift due to nonlinearity, and minimizing the J_2 drift. In order to verify these guidance methods, a new dynamic model for the relative motion of spacecraft is developed. These dynamics include the two main disturbances for spacecraft in Low Earth Orbit (LEO), J_2 and atmospheric drag. Using this dynamic model, numerical simulations are provided at each step to show the effectiveness of each method and to see where improvements can be made. The main result is a set of initial conditions for each spacecraft in the swarm which provides the trajectories for hundreds of collision-free orbits in the presence of J_2. Finally, a multi-burn strategy is developed in order to provide hundreds of collision-free orbits under the influence of atmospheric drag. This last method works by enforcing the initial conditions multiple times throughout the mission thereby providing collision-free trajectories for the duration of the mission

    "Predictability of body mass index for diabetes: Affected by the presence of metabolic syndrome?"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MetS) and body mass index (BMI, kg.m<sup>-2</sup>) are established independent risk factors in the development of diabetes; we prospectively examined their relative contributions and joint relationship with incident diabetes in a Middle Eastern cohort.</p> <p>Method</p> <p>participants of the ongoing Tehran lipid and glucose study are followed on a triennial basis. Among non-diabetic participants aged≥ 20 years at baseline (8,121) those with at least one follow-up examination (5,250) were included for the current study. Multivariate logistic regression models were used to estimate sex-specific adjusted odd ratios (ORs) and 95% confidence intervals (CIs) of baseline BMI-MetS categories (normal weight without MetS as reference group) for incident diabetes among 2186 men and 3064 women, aged ≥ 20 years, free of diabetes at baseline.</p> <p>Result</p> <p>During follow up (median 6.5 years); there were 369 incident diabetes (147 in men). In women without MetS, the multivariate adjusted ORs (95% CIs) for overweight (BMI 25-30 kg/m2) and obese (BMI≥30) participants were 2.3 (1.2-4.3) and 2.2 (1.0-4.7), respectively. The corresponding ORs for men without MetS were 1.6 (0.9-2.9) and 3.6 (1.5-8.4) respectively. As compared to the normal-weight/without MetS, normal-weight women and men with MetS, had a multivariate-adjusted ORs for incident diabetes of 8.8 (3.7-21.2) and 3.1 (1.3-7.0), respectively. The corresponding ORs for overweight and obese women with MetS reached to 7.7 (4.0-14.9) and 12.6 (6.9-23.2) and for men reached to 3.4(2.0-5.8) and 5.7(3.9-9.9), respectively.</p> <p>Conclusion</p> <p>This study highlights the importance of screening for MetS in normal weight individuals. Obesity increases diabetes risk in the absence of MetS, underscores the need for more stringent criteria to define healthy metabolic state among obese individuals. Weight reduction measures, thus, should be encouraged in conjunction with achieving metabolic targets not addressed by current definition of MetS, both in every day encounter and public health setting.</p

    Cost-of-Illness Analysis of Type 2 Diabetes Mellitus in Iran

    Get PDF
    Diabetes is a worldwide high prevalence chronic progressive disease that poses a significant challenge to healthcare systems. The aim of this study is to provide a detailed economic burden of diagnosed type 2 diabetes mellitus (T2DM) and its complications in Iran in 2009 year.This is a prevalence-based cost-of-illness study focusing on quantifying direct health care costs by bottom-up approach. Data on inpatient hospital services, outpatient clinic visits, physician services, drugs, laboratory test, education and non-medical cost were collected from two national registries. The human capital approach was used to calculate indirect costs separately in male and female and also among different age groups.The total national cost of diagnosed T2DM in 2009 is estimated at 3.78 billion USA dollars (USD) including 2.04±0.28 billion direct (medical and non-medical) costs and indirect costs of 1.73 million. Average direct and indirect cost per capita was 842.6±102 and 864.8 USD respectively. Complications (48.9%) and drugs (23.8%) were main components of direct cost. The largest components of medical expenditures attributed to diabetes's complications are cardiovascular disease (42.3% of total Complications cost), nephropathy (23%) and ophthalmic complications (14%). Indirect costs include temporarily disability (335.7 million), permanent disability (452.4 million) and reduced productivity due to premature mortality (950.3 million).T2DM is a costly disease in the Iran healthcare system and consume more than 8.69% of total health expenditure. In addition to these quantified costs, T2DM imposes high intangible costs on society in terms of reduced quality of life. Identification of effective new strategies for the control of diabetes and its complications is a public health priority

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income&nbsp;countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of&nbsp;countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions

    Get PDF
    BACKGROUND: To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. METHODS: In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. FINDINGS: Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0·685 (95% CI 0·629-0·741) to 0·833 (0·783-0·882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. INTERPRETATION: We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. FUNDING: World Health Organization, British Heart Foundation (BHF), BHF Cambridge Centre for Research Excellence, UK Medical Research Council, and National Institute for Health Research

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
    corecore