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Abstract:

A micromachined deformable mirror with pixelated electrostatic

actuators is proposed. The paper begins with a physical description of

the proposed mirror. Then a mathematical model in the form of a nonlinear

partial differential equation describing the mirror surface deformations

is derived. This model is used to derive the required voltages for the

actuators to achieve a specified static deformation of the mirror

surface. This is followed by the derivation of a static nonlinear

feedback controller for achieving noninteracting actuation. Then the

structure for a complete control system for wavefront correction is

proposed. The paper concludes with a discussion of the physical

implementation of the proposed control system.

I. INTRODUCTION

In the development of large space interferometers and multi-aperture

reflectors, deformable mirrors are used to compensate for distortions in

elements of the optical train and/or in the instrument's field of view.

Such mirrors should be small and lightweight. Moreover, they should be

highly pixelated so that the deformations can be controlled with high

lateral resolution.

The first actively controlled deformable mirrors were developed by

NASA in the 1960's for use as solar collectors or as ground-based

telescopes [I]. Since then, there has been extensive development in this

area. Comprehensive surveys of works on actively controlled deformable

mirrors were given by Ealey [2] and Tyson [3]. In 1977, Grosso and Yellin

[4] developed a membrane mirror whose deformations are controlled by

means of discrete electrostatic actuators. Subsequently, various forms of

deformable mirrors with discrete piezoelectric and magnetostrictive

actuators were also developed [5]-[9]. The advent of silicon VLSI

technology has made possible the integration of deformable mirrors with

microelectronic circuitry. In 1983, Hornbeck [I0] perfected a deformable

mirror device with pixelated mirror elements whose size is 51 _m square.

The mirror deformations are controlled by electrostatic actuators driven

by microelectronic circuits which are integrated with the mirror

assembly. His mirror was used primarily as a light modulator. Later, in

1989, a wavefront control device with a deformable mirror integrated with

control and sensor units was introduced by Ealey and Wheeler [II]. In

their device, the actuators are spaced 1.0 mm apart. The voltages applied

to the actuators are on the order of 200 volts. Recently, efforts have

been initiated at the Jet Propulsion Laboratory in exploiting micro-

machining technology to develop deformable mirrors with the afore-

mentioned characteristics and with pixelated electrostatic actuators

which are spaced less than 25 microns apart. In this paper, attention is

focused on the analytical design of control systems for such deformable
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mirrors.

The paper begins with a physical description of the proposed mirror.

Then a mathematical model in the form of a nonlinear partial differential

equation describing the mirror surface deformations is derived. This

equation is used to derive the required actuator voltages to achieve a

specified static deformation of the mirror surface. This is followed by

the derivation of a static nonlinear feedback controller for achieving

noninteractlng actuation. Then the structure for a complete control

system for wavefront correction is proposed. The paper concludes with a

discussion of the physical implementation of the proposed control system.

2. PHYSICAL DESCRIPTION OF DEFORMABLE MIRROR

Figures I and 2 show respectively the sketches of the top and side

views of the proposed deformable mirror with pixelated capacitive

actuators. The mirror may be realized as "flip chip"Ztype assemblies

consisting of two matched mlcromachined silicon struc£ur'es' ioun[ed

face-to-face and fused together along _ their peripheries. The key elements

of the mirror consist of simple, easily replicated, electrostatic linear

actuators, each responsible for pulling on a small portion of a thin

flexible silicon membrane which is the substrate for the deformable

mirror. The mirror surface is formed by depositing a metallic or

multi-layer dielectric film on the membrane. The membrane with posts (See

Fig. 2) is micromachined from a silicon sheet. The posts serve as supports

for the membrane and also as halves of the electrostatic actuators. The

bottom half of the mirror assembly consists of a set of posts with four

silicon blades attached to each post. These blades serve as leaf springs

for supporting the posts of the upper mirror assembly, and for providing

a restoring force for the actuation system. This bottom assembly is

mlcromachined from a silicon wafer. The electrostatic actuators are

formed by attaching conductive pads to the upper posts and the bottom

half of the mirror assembly. The electronic element access, electronic

actuator drivers, and possibly the feedback controller circuitry may be

monolithically integrated into the mirror assembly.

We note that the geometric structure of the deformable mirror proposed

here differs from that of Hornbeck [I0]. In his mirror, each actuator,

when activated, produces a concave deformation of the mirror surface over

the entire plxel. This causes focusing of the incoming light beam in

front of the pixel. Here, each actuator pulls down on the mirror surface

at a post area and thereby induces deformation over adjacent portions of

the mirror surface. Except for the flat spots over the post areas, the

overall shape of the mirror surface is determined by the displacements of

all the actuators.

The initial performance goals for the proposed mirror will be the

control of a 32 x 32 plxel flat mirror with I0 nm accuracy. Once these

goals have been achieved, efforts will be directed at extending the

number of plxels/control elements until 10 nm accuracy can be achieved

over a 1024 x 1024 plxel surface.

3. MATHEMATICAL MODEL

Let _ be an open connected subset of the Euclidean plane H 2 with a

plecewlse smooth boundary 0_ representing the spatial domain of the

mirror. We introduce a mesh on Q whose mesh points are denoted by x =
mn

(xlm, X2n), m = I ..... M; n = I ..... N. For a rectangular mirror, _ is
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= R2: _ , _ PS
specified by m R {(x1'x2) • Ixll < _I Ix21 < t2 }, where the _!

are specified lengths. For a circular mirror, _ is specified by the disk

= {(r,8), 0 s r s r , 0 s 8 s 2_}. At each mesh point x , we
_C o mn

introduce a patch _ , a bounded open subset of _ representing the
mn

effective spatial domain of the (m,n)-th actuator force containing xm, as

an interior point. Typical meshes and patches for the rectangular and

circular mirrors are shown in Fig. 3.

Let the mirror surface be a thin membrane with density p = p(x) being

a specified positive piecewise smooth function satisfying the following

bounds:

p(x) _ p < +_ for all x • _. (1)
0 < Pmin max

The variation of the mass density due to the supporting posts can be

(a known constant) for x • _ .
included in p by setting p(x) = Pmn mn

Let _l]' i,j = 1,2 denote the components of the symmetric stress

tensor in the mirror surface satisfying the positivity condition

_ j_,_j , R211_112 < _1 _ c I1_112 for all _ = (_1 _2 ) • ' (2)
C 1 -- 2

l=lJ=l

where c and c are known positive constants. In the special case with
1 2

uniform tension T, we have _l] = T6ij' where 51j denotes the Kronecker

delta.

The downward displacement u(t,x) normal to the mirror surface at a

point x • _ and time t _ 0 can be described by the following equation:

p(x) 82u _ _ 8 [ (x) 8_xj) = f ' (3)at 2 I=I J=l-_i _lJ

where f = f(t,x) is the surface force density whose explicit form will be

derived later. Assuming that the mirror is rigidly attached to its

boundary an, u must satisfy the boundary condition

u(t,x) = 0 for x • a_ and t z O. (4)

Finally, the initial conditions for u are specified by

au = u'uCO, x) = u (x) (t,x) (x) for x • _. (5)
0 * _ 0

To derive an explicit expression for the surface force density f, we

first consider the electrostatic force density over a patch _ due to a
mn

specified voltage V (t) applied to the (m,n)-th actuator. We assume that
mn

the mirror surface curvature is small so that each patch _ is
mn

essentially parallel to the bottom assembly. Thus each actuator's

conductive surfaces can be regarded as making up a parallel-plate

capacitor. Neglecting frlnging effects of the electric field at the

boundary of _ , the electrostatic force density is given by
_n
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f (t x) = I ( V (t))2mne ' -2-Co D u(t x ) for all x _ _ , (6)-- , mn
mn

where D is the distance between the undeformed mirror surface and the

bottom plane and e is the permlttivity of free space. When D
o

]u(t,x )], (6) can be approximated by
mn

f (t,x) = 1 V 2e -_-¢ (t)/D 2 for all x _ _ . (6')
o mn mn

Considering each leaf spring as a small cantilever beam having uniform

cross section with moment of inertia I and Young's modulus E, the force

density f due to four leaf springs over the patch _ is given by
s mn

IZEI
f (t,x) - u(t,x ) for all x _ _ (7)
s _ 3 A mn ran'

m n _N

where A denotes the area of the patch _ Here, we have neglected the
mn mn"

inertial effects of the leaf springs.

Let _b denote the spatial weighting function associated with the
mn

(m,n)-th actuator such that _ (x) = 0 for x _ Q - ([2 u a_ ).
mn mn m n

Combining (6) and (7), equation (3) becomes a nonlinear partial

differential equation given by

i ia[ cx %]at 2 :=I j=l axi _lJ

M N

m=In=l mn mn

u(t,Xmn)} _mn(x)"

Let K(x,x',t,_) denote the Green's function corresponding

solution of the linear equation:

C8)

to the

M N

+[tr K(x ' { I [ Vmn(t)]2"0_[2 x',t,1[) _ _ 2-Co D- u(t,Xmn) _3 A
m=in=i mn mn

P(X) a2uat2 i=lf f a[j=l_ _lj (x) a-_jl : _(t-_' x - x' ), (9)

with boundary and initial conditions given by (4) and (5), where

denotes the Dirac delta function at t = T and x = x'. Equation (8) can be

reformulated as a nonlinear integral equation:

_K(x, _aK, ,u(t,x) = x',t,O)u (x') dx' + -_--tx, x ,t,O)u'(x') dx'o o

12EIu(t,Xmn)} @mn(x')dx'

(I0)

Under the assumption that the mirror deformations Aver _ are
mn

sufficiently small compared to D so that (6) may be approximated by (6'),

equations (8) and (10) become linear. This assumption may not be

justified when D is made small so as to reduce the operating voltage
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levels of the actuators. For example, in Hornbeck's deformable mirror, D

is 620 nm, and the peak mirror deformation for normal operation is around

100 nm. Evidently, (6') is not a good approximation for this case.

4. STATIC SHAPE CONTROL

Let u = u (x) be the desired static shape of the mirror surface
d d

defined over the entire spatial domain f]. It is required to determine the

static voltages V for each actuator to achieve the desired shape u .
mn d

Let K = K (x,x') denote the Green's function associated with the
6 S

boundary-value problem:

-_- ) = _(x - ), x e Q, (11)
i=l j=l !

with boundary condition

u(x) = 0 for x e aft. (12)

Then, the static equation corresponding to (8) can be reformulated as

an integral equation for the mirror displacement u corresponding to given

static actuator voltages V :
mn

M N _,

f: zz{ ( oo ]u(x) = s (x'x') -2-Co D - U(Xmn)
m=ln=l

12EI u(x )} ¢ (x')dx',
£a A mn mn

Inn mn

for x e _. (13)

Let u = (U(Xll) u(XlN) U(XM1) U(XHN)) w and _k = (_k!, o . . , , • • • , , • • • _ 1_, • • • ,

_klN,..°,_km,...,_kMN)V, k = 1,2. Setting x = xi] In (13) leads to a set of

M x N algebraic equations relating u and _2 These equations can be

written as

(I + K)u = p(u)V 2, (14)

where I denotes the MN x MN identity matrix; K is the MN x MN matrix

whose k-th row K is given by
k

where

mn mn mrl

P(u)

'J(u) .... pLy(u)), wherePHI

l](u) = o )2 K (x i ,x') ¢ (x') dx' ,Pmn 2(D - U(X ) _ J mn

mn mn

_ lJ(u) ...is the MN x MN matrix whose k-th row is (p (u) ..... P,N ' '

i = integer(k/M), j = k Mod(M). (17)
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Explicit expressions for K and pl] corresponding to rectangular and
S mn

circular mirrors are given in the Appendix.

(X!) ..... Ud(XlN) .... U (X i), • • U (X N)) TIf we set u = u d = (u d i ' d " ' d '

then (14) becomes a set of M × N linear algebraic equations for the

unknown actuator voltages V. Evidently, if P(u d) is nonsingular, then _2

is uniquely determined by

_2 = P(Ud)-l(i + K)Ud" (18)

The matrix P(u d) is nonsingular if and only if its rows are linearly

independent, or equlvalently the H × N matrices given by

pij(Ud) _ : , i = 1 ..... M; J = I ..... N, (19)

L | J(Ud)* • l](Ud)PMI " PMN

I]
are linearly independent. Since p depends on the desired mirror surface

mn

displacement u d, the set _ of all displacements Ud such that P(u d) is

nonsingular corresponds to the set of all mirror surface displacements

which have one-to-one correspondence with the actuator voltages V . In
mn

-i(I + K)u,fact, if we define the nonlinear mapping u N(u) by N(u)=P(u)
then N is an invertible mapping with domain D. In the case where the
desired mirror surface deformation u = u (x) has spatial symmetry, the

d d

number of equations in (14) can be reduced accordingly.

Now, given a set of actuator voltages V, the corresponding mirror

surface displacements at the mesh points x can be determined by solving
mn

the nonlinear equation (14) for u. If we define the nonlinear mapping

u N(V2)u by N(V2)u = P(u)V 2- Ku, then the solutions correspond to the

fixed points of N(V). In physical situations where the actuator voltages

satisfy a magnitude constraint of the form _2 _ _2 < _, the set of all
mn max

= R":_2 _ _2admissible V's is given by V {V _ _ , m = 1..... M, n =
mn max

I, ,N} (a hypercube in RMN) Then the set of all admissible u's is
• ° • ° d

given by N-1(_).

Remarks:

(R-I) Once the required actuator voltages V for achieving the
mn

desired static mirror surface displacements at the mesh points are

determined, the mirror surface displacements at other points in the

spatial domain _ can be found using (13) with u(x ) set to u (x ).
mn d mn

(R-Z) In all the existing works on deformable mirrors, it is

assumed that the static mirror surface displacements at the mesh points

x are related to the actuator inputs by a linear transformation

commonly called the influence function matrix which is valid for small
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displacements. For large mirror displacements, the relation between

u(xtj) and the actuator voltages Vmn is given by (13) with x set to xlj.

This relation is implicit and nonlinear. In the special case of small

displacements such that approximation (6') holds, this relation becomes
linear. Using (13} with a single actuator at fl to obtain u(x) in terms

mn

of V gives the usual influence function.
mn

(R-3) If the number of actuators is less than the number of mesh

points at which the desired mirror displacements are specified, then,
under the linear approximation (6'), (14) consists of a set of
overdetermined linear algebraic equations for the unknown variables _2 .

mn

We may use the least-squares solution, which corresponds to obtaining the

pseudo-inverse of the influence function matrix [3].

Noninteractlng Actuation:

Due to stress in the membrane, the voltage V applied to the (m,n)-th
mn

actuator will influence the membrane displacements at all the patch

locations. To simplify the mirror deformation control, it is desirable to

introduce appropriate feedback and new control variables c such that
mn

c only influences the mirror displacement u at the mesh point x , and
Ill n mn

u(x ) only depends on c . Thus, the new controls c produce
mn Inn mn

noninteractlng actuation of the mirror surface displacements at the mesh

points. To achieve noninteraction, we introduce a static feedback control

of the form _2 = F(c - u), where F is a feedback gain matrix which may

depend on u. Thus, in view of (14), we have

(I + K)u = P(u)F(c - u), (20)

or

[I + (I + K)-IP(u)F]u = (I + K)-IP(u)Fc, (21)

where c = (C11,...,CIN .... ,CMI .... ,CMN )T. To achieve noninteracting

actuation, we seek an MN x MN matrix F such that (I + K)-Ip(u)F = A, a

specified constant diagonal matrix with nonzero diagonal elements All.

Thus, u and c are related by a diagonal matrix operator given by

u = [I + A]-IAc, (22)

and the required feedback gain matrix F is given by

F = P(u)-I(I + K)A. (23)

In physical terms, the static feedback control in effect cancels the

spring coupling forces to produce nonlnteracttng actuation with respect
to the new control c. In the special case where the mirror displacements

are small as compared to the actuator gap D so that approximation (6') is

valid, P becomes a constant matrix. Consequently, F is also a constant

matrix and the noninteractlng controller is linear. We note that P(u) and

K depend on the parameters E, I, D, and £ whose values can be
mn

accurately estimated. Therefore F can be determined with good accuracy.

Finally, the foregoing nonlnteracting controller is also valid for the
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dynamic case, since the couplings between the mirror displacements at the

mesh points involve elastic forces only.

5. DYNAMIC SHAPE CONTROL

Assuming that the desired nominal static-shape u d for the mirror is

attainable by appropriate choices of the actuator voltages V , it is of
mn

interest to control the deviations of the mirror shape about u d for

wavefront correction. We propose to achieve this objective in three

steps. Figure 4 shows the proposed structure of the overall control

system for wavefront correction. First, a static feedback controller for

achieving the desired nominal static mirror-shape and noninteracting

actuation of the deformable mirror is introduced. The function of the

minor-loop feedback controller is to modify the dynamic response of the

actuators. This modification can also be performed ahead of the static

feedback controller depending on the method of implementation. Finally, a

global feedback controller which makes use of the output of the wavefront

estimator to generate the appropriate actuating signals for wavefront

correction is introduced. The static feedback controller has already been

discussed in Sec. 4. In what follows, the discussion will be devoted to

the modification of the dynamic response of the actuator, and the global

shape controller for wavefront correction.

5.1 Actuator Dynamics Modification

The main objective here is to modify the dynamics of the actuator to

ensure satisfactory response to input commands. Since this controller is

to be integrated with the mirror assembly, the control law should have

the following properties:

(i) It should be sufficiently simple so that it can be realized by

microelectronic circuitry which can be integrated monolithically with the

mirror microstructure.

(ii) It should be model independent so that it is unnecessary to

identify the system parameters for their implementation.

(iii) Its performance should be sufficiently robust with respect to

system parameter variations.

Since the mirror surface has very little internal damping, the actuator

forces may induce undesirable surface vibrations. Therefore, it is

necessary to introduce damping externally. A possible approach is to

introduce external passive damping. #his may be achieved by housing the

bottom mirror assembly in an enclosure which contains air, and has minute

holes for air passage. Alternatively, damping can be achieved by means of

active feedback controls.

To derive appropriate forms for the active feedback controls, we make

use of the partial differential equation (8) linearized about the nominal
^ A

mirror surface deformation u = u (x) produced by the static actuator
d d ^

voltage 9 which produces the desired u d. Note that Ud(X) = Ud(X) only at

the mesh points x = x Let _u = u - u and _V = V - 9. The linearized
mn" d'

equation (8) is given by :

2 2 [ a u]

8t 2 |=1 J=l 1
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x . (i 2c c 9 _V (t)

(D - u (x ) )3 _3 A mn (D - u (x ) )2 _mn '
m=ln=l d mn mn d mn

(24)

with boundary condition

6u(t,x) = 0 for x _ OR and t z O, (25)

and initial conditions:

O_u

(_u(O,x) = U (X) - Ud(X) , (O,x) = U' (X) for x _ ft. (26)o at o

Consider the total energy functional of the perturbed mirror surface

about u given by
d

1 P

M N E _2

2 1"2 (D - U (X ))3 _3 A mn
m=ln=l d mn mn

This energy functional is nonnegative for all _u and O_u/at in the

Sobolev space H I(_) (i. e. the Hilbert space of all real-valued
0

square integrable functions defined on _ and vanishing on aQ such that

their first-order partial derivatives are also square integrable), if

c _2
o mn laEI

< for m = 1..... M, n = 1..... N. (28)

(D - u (x ))3 _3A
d mn mn

The time rate-of-change of E, after integration by parts, and making

use of (24) and boundary condition (25), is given by

M N c _2

dE/dt : ; O_u(_ _{[ o mn _3AI2EI)[_u(t,x ) - _u(t,x)]
fl (D -- U (X ) )3 mn

m=In=l d mn mn

c 9 _v (t)

o mn mn } )+ _mn(X) dx (29)
(D - u (x ))2

d mn

By requiring that 8u(t,x) = _u(t,x ) and a_u(t,x)/Ot = O_u(t,x )/Ot
mn wn

for all x _ Q (29) reduces toP
mn

" " c V _V (t) aSu(t,x )

(D - Ud(X ))2 _ n at
m=In=l ms ms

If we set

8_u-
_Vm. (t) = -Tmn -OE-(t'xmn) @mn (x)' _'mn > O, (31)

then
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M N eV

o ms mn [J;r _mn(X)dx_(_u(t,x )/_t) 2 _ O. (32)dE/dr = - _
(D - u (x ))a _ ) mn

m=In=l d mn mn

The control law (31) implies local rate-feedback at each actuator

location with feedback gain -_ only.
mn

Incorporating the foregoing local rate-feedback with the noninter-

acting controller, the transfer function between u and c is a diagonal

matrix H(s) whose diagonal elements have the form:

g|

h (s) = , i = I ..... NM. (33)

ii (s 2 + 2_iois + _)

To achieve zero steady-state error for step actuator commands, a

proportional-plus-integral minor-loop controller is introduced. The

parameters of the controller and the gain gl are chosen to ensure

stability and satisfactory transient response to step-input commands.

When the noninteracting controls are implemented by means of a digital

computer, processing delays are introduced. These time-delays may be

incorporated in hii(s).

5.2 Global Controller for Wavefront Correction

The initial step in wavefront correction is to estimate the wavefront

of the incoming light wave reflected from the deformable mirror based on

the output of the wavefront sensor. In physical situations, a wavefront

sensor such as the Hartmann-Shack wavefront sensor uses an array of

micro-lenses, each of which samples a portion of the incoming beam and

focuses light onto a detector consisting of a CCD camera or a lateral

field-effect photodiode array.

Let _ be a bounded open connected subset of R 2 corresponding to the

effective spatial domain of the wavefront sensor. We introduce a mesh on

^ (; ^whose mesh points are denoted by x ffi ), m = 1 ..... M; n =
s mn lm' 2n

1 At each mesh point x , we introduce a patch _ , a bounded open
_'''_ " mn S

subset of _ , representing the effective aperture of the (m,n)-th lenslet
S

^

containing x as an interior point. Let @ = @(t,;) denote the wavefront
mn

of the incoming wave reflected from the deformable mirror and impinging

onto the wavefront sensor. The local gradient or angular tilt in the

wavefront averaged over the aperture of the (m,n)-th lenslet is given by

V_(t,')I x _.mn _mn @mn (x)V@(t'x) dx = (x - ), (34)

g

where _mn IS a given spatial weighting function associated with the
^0

(m,n)-th lenslet; f is the focal length of the lenslet; x is the
Mn^

nominal position of the focal spot for a collimated beam, and x is the

position of the focal spot for the incoming beam. Thus, the angular tilt

in the wavefront can be estimated by measuring the deviations (; - _o ).
mn

From the local gradient data, it is possible to obtain an estimate of the
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wavefront @ = @(t,x) [12]. For wavefront sensors with circular apertures,

it Is advantageous to express @ in terms of Zernike polynomials. By

comparing @ with a reference wavefront @R' we obtaln the wavefront

error 3@ = @ - 9. In order to generate the mirror shape correction
R

command from 3@, it is necessary to map the wavefront sensor domain _s

onto the mirror domain _. Let this mapping be a diffeomorphlsm S from _s

onto _. Then the mirror shape correction command 3c is obtained by

evaluating 3C(t,x) _ 3@(t S-Ix) at all the actuator locations x in _.

Again, due to the presence of processing delays in the wavefront

estimator, a dynamic compensator may be incorporated in the global shape

controller to ensure overall system stability.

6. PHYSICAL IMPLEMENTATION

In the physical implementation of the proposed control system, it is

desirable to integrate as much as possible the electronic circuitry of

the controllers with the mirror assembly. Due to the minute capacitances

associated with the actuators, it is clear that the actuator drivers

consisting of operational amplifiers must be located in the immediate

vicinities of the actuators.

To implement the rate-feedback control given by (31) for damping,

consider a parallel-plate capacitor driven by an operational amplifier as

shown in Fig. S. Assume that the distance A between the capacitor plates

is time varying so that the capacitance C(t) = c A/A(t), where A is the
0

area of each plate. Thus, we have

dC(t)
dv(t) + v(t) - i(t) (35)

C(t) dt dt '

where i is the current flowing to the capacitor. Using the expression for

C(t), (35) can be rewritten as

cA cA
o dv o dA(t)

- --v - i(t). (36)

A(t) at A(t)2 dt

Now, if the voltage v(t) is held at a constant value v , then the plate
0

velocity is related to i(t) by

dA(t) _ i(t)A(t) 2 (37)

dt c Av
o o

Thus, rate-feedback can be introduced by sensing the current i(t)

through a resistor in series with the capacitor as shown in FIE. 5. The

current-sensing resistor can be attached directly to the bottom plate.

The propor t ional-plus-integral minor-loop controller can also be

realized using operational amplifiers which can be integrated with the

mirror assembly. Since the noninteracting controller requires algebraic

manipulations, an external digital computer is needed for its

implementation. However, it is possible to integrate this controller with

the mirror assembly when single-chip specialized computers become

available.

Finally, the wavefront estimator and the global mirror shape
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controller require a digital computer with sufficiently high speed so

that the processing time delay will not be detrimental to the performance

of the overall system. Most likely, these components cannot be integrated

with the mirror assembly.

To obtain some information on the orders of magnitude of various

system parameters and variables, we consider a 1.7 mm square rectangular

mirror with 15 x 15 actuator patches. Each patch is a 25 _m square pixel.

The mirror membrane, leaf springs, and supporting posts are micromachined

from singie-crystal silicon Sheets. Each leaf spring is a 45-_m long,

l-_m thick cantilever beam with rectangular cross-section (width = 4 _m).

Usin_ known data for single-crystal silicon [133 (Young's modulus E = 1.9
x I0 N/cm 2, and mass density p = 2.3 gm/cm_), the electrostatic and

spring forces associated with a single actuator can be computed from (6)

and (7):

F _= f A = 2.7669 x 10 -21[V/(D - u)] 2 N (38)
C

F _ f A = 8.340 x lO-4u N (39)
S S

where V is the actuator voltage, D is in meters:, _and u is the tip _

displacement of the leaf spring in meters. For a square membrane with

width L under uniform tension T, the upward restoring force on a square

pixel with width _ located at the center of the membrane with a downward

displacement u is given approximately by

F = 8T_u/L N. (40)
T

For T = 1 N/m, and the given dimensions for the membrane and pixels, (40)

becomes

F = O. 11765u N. (40')
T

For a typical membrane displacement u = O. I gm, and D = 0.5 #im, the

required actuator voltage V can be computed by balancing the upward

restoring forces F and F with the downward force F . The resulting V is
S T e

equal to 0.8248 volt which is within the operating range of typical

operational amplifiers.

Using the foregoing mirror parameters, the static actuator voltages

V for attaining a hi-parabolic mirror deformation are given by
ran

Ud(Xl,X 2) = 1.9156 X I0-13(8502 - X_)(8502 - X_) #is. (41)

The results are shown in Fig. 6.

7. CONCLUDING REMARKS

__th_s papef,_we haste only considered []_e anaiy£ical design of a

control system for a micromachined deformable mirror. The approach is to

introduce first appropriate static feedback controls for noninteracting

actuation. Both local rate-feedback and a minor-loop controller are

introduced for modifying the dynamics of the actuators. Then a global

controller is introduced for wavefront Correc_tion__:_pec!al-conside_a-f[on

is taken to integrate the confroliers--with--£he mil-rOi: assembly_ O-ther

important factors such as thermal effects on the performance O f the

controlled deformable mirror are not studied here. The results pertaining

to the fabrication of the proposed deformable mirror, and the actual

Z

i

z
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performance of the proposed control system are planned to be reported in

the near future.
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APPENDIX

Explicit expressions for K and plj corresponding rio rectangular and
B mn

circular mirrors are given below.

A {(x1,x2) _ R2For a rectangular mirror with spatial domain 0 = _A =

is
]xll < 'i' i = I 2} and uniform tension T, the Green's function K B

given by

oo oo 4'1_ 2 sin
' x') = Z Z sin 2' 2'

Ks(Xl'X2'Xl ' 2 _T(k2, 2 + k'2_. 2) ! 2
k=l k'=l 1 2

sin Z' J"x sin 2£ I 2

(A1)

Let the actuator patches f2 be square pixels with width A. Thus _ =
mn ran

{(Xl,X 2) E R2: Ix I - Xlml < A/2, Ix2 - X2nl < A/2}. Assuming that the

actuator weighting function 9)mnCOrrespond s to the characteristic function

of _ (i.e. @mn(X) = 1 if x E _ and @ (x) = 0 otherwise), the
mn mn' mn

coefficients pl] defined by (17) are given by
mn

co oo 4_ l_2(Xmk,Pnk,D

o ZZ
2(D - Ud(Xmn) )2k=i k'=lnT (k2'21 + k' 2£2)2

[ kII(X11+'1) 1 [ kII(X2j+'2)_x sin 2,I sin 2,2 j,

(A2)

= (xt x2]where x i] i' ), and

C(mk'= x -A/2 sin 2,1 dX'l = k-_tc°s(k'II(X1m--2-* 'I))

lm

- cos(k'_(Xlm ÷ -_-+ '1)) ,
(A3)

_nk, = j2. sin dx' - 2 cos(k, ii(X2n- Ax -A/_ _ 2 k'= -2 + '2))
2n

- cos(k'_(x2 + T + £21) •
(A4)

The Green's function K for a circular mirror with spatial domain _c
S

{(r,e), 0 _ r _ r , 0 _ e _ 2_} and uniform tension T is given by
0
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K (e,r,e',r') = J r) ( )cos(ke)
8 _Tr_ r )]2 k(_kk ' [Jkk' _kk'k=l k'=l [Jk+l(_kk ' o

x cos(ke') + Jkk,(Akk, r')sin(kO)sin(k8')], (A5)

where J denotes the Bessel function of the first kind of order k, and
k

(hkk,ro) iS k'-th zero of Jk"

Let the actuator patches _ be fan-shaped plxels with radial length A
mn

and aperture angle e as shown in Fig. 3. Thus _ = {(e,r): le - e I <
p mn m

8 /2, [r - r [ < A/2}. In this case, the coefficients plj defined by (17)
p n mn

with @mn being the characteristic function of _.n are given by

co oo

Pmn - 2(D - Ud(Xmn))2 k=l k'=l/rTr_[Jk÷l(Akk'ro )]2 J)

× [_ cos(ke I ) + _nk, Sin(kS|)],
ink'

(A6)

where

(rO., }{sll }^ = P cos(k' e' ) de' _ r' ) r' dr' ,
(_mk' k_e - e 12 A122kk'

ink' p

(A7)

_nk' nk' p

e /2

nk' p

(s;;" }sin(k'e' ) de'} n Al2Jkk' (Akk' r' ) r'dr' .

n

(AS)
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Side view of upper wafer

L_J thin me/txane

7 I

Conductive pads (see below)

four blades of the crossesserve as leaf springs

Side view of the lower wafer

r,,,,oconductive pads form an air-spaced capacitor

Flg. 2 Side vlew of the deformable mirror.
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Fig. 3 Typical meshes and patches for rectangular and circular

Mirrors.
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Fig. 5 Implementation of local rate-feedback control.
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Fig. 6a Desired bi-parabolic deformation u d for a 1.7 mm square

mirror With 15 x 15 actuators. (Hinimum deformation at

mirror center = O.l _m.)
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Fig. 6b Required static actuator voltages V for bi-parabolic

mirror deformation given in Fig. 6a. (Maximum voltage at
mirror center = 0.8248 volt.)
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