16 research outputs found

    Oxygen and hydrogen ion abundance in the near-Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions

    Full text link
    The composition of ions plays a crucial role for the fundamental plasma properties in the terrestrial magnetosphere. We investigate the oxygen-to-hydrogen ratio in the near-Earth magnetosphere from -10 RE<XGSE}< 10 RE. The results are based on seven years of ion flux measurements in the energy range ~10 keV to ~955 keV from the RAPID and CIS instruments on board the Cluster satellites. We find that (1) hydrogen ions at ~10 keV show only a slight correlation with the geomagnetic conditions and interplanetary magnetic field changes. They are best correlated with the solar wind dynamic pressure and density, which is an expected effect of the magnetospheric compression; (2) ~10 keV O+ ion intensities are more strongly affected during disturbed phase of a geomagnetic storm or substorm than >274 keV O+ ion intensities, relative to the corresponding hydrogen intensities; (3) In contrast to ~10 keV ions, the >274 keV O+ ions show the strongest acceleration during growth phase and not during the expansion phase itself. This suggests a connection between the energy input to the magnetosphere and the effective energization of energetic ions during growth phase; (4) The ratio between quiet and disturbed times for the intensities of ion ionospheric outflow is similar to those observed in the near-Earth magnetosphere at >274 keV. Therefore, the increase of the energetic ion intensity during disturbed time is more likely due to the intensification than to the more effective acceleration of the ionospheric source. In conclusion, the energization process in the near-Earth magnetosphere is mass dependent and it is more effective for the heavier ions

    The Polar Wind Modulated by the Spatial Inhomogeneity of the Strength of the Earth's Magnetic Field

    Get PDF
    When the geomagnetic field is weak, the small mirror force allows precipitating charged particles to deposit energy in the ionosphere. This leads to an increase in ionospheric outflow from the Earth's polar cap region, but such an effect has not been previously observed because the energies of the ions of the polar ionospheric outflow are too low, making it difficult to detect the low‐energy ions with a positively charged spacecraft. In this study, we found an anticorrelation between ionospheric outflow and the strength of the Earth's magnetic field. Our results suggest that the electron precipitation through the polar rain can be a main energy source of the polar wind during periods of high levels of solar activity. The decreased magnetic field due to spatial inhomogeneity of the Earth's magnetic field and its effect on outflow can be used to study the outflow in history when the magnetic field was at similar levels.publishedVersio

    Mass‐loading the Earth's dayside magnetopause boundary layer and its effect on magnetic reconnection

    Get PDF
    When the interplanetary magnetic field is northward for a period of time, O+ from the high‐latitude ionosphere escapes along reconnected magnetic field lines into the dayside magnetopause boundary layer. Dual‐lobe reconnection closes these field lines, which traps O+ and mass loads the boundary layer. This O+ is an additional source of magnetospheric plasma that interacts with magnetosheath plasma through magnetic reconnection. This mass loading and interaction is illustrated through analysis of a magnetopause crossing by the Magnetospheric Multiscale spacecraft. While in the O+‐rich boundary layer, the interplanetary magnetic field turns southward. As the Magnetospheric Multiscale spacecraft cross the high‐shear magnetopause, reconnection signatures are observed. While the reconnection rate is likely reduced by the mass loading, reconnection is not suppressed at the magnetopause. The high‐latitude dayside ionosphere is therefore a source of magnetospheric ions that contributes often to transient reduction in the reconnection rate at the dayside magnetopause.publishedVersio

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Comparison of Quality Measures for Walén Relation

    Get PDF
    The standard method for identifying magnetohydrodynamic rotational discontinuities in spacecraft data has been to examine how well the WalĂ©n relation is satisfied. In this paper, we apply two different versions of the WalĂ©n test to a database of nearly 1,000 dayside magnetopause crossings by the Magnetospheric Multi-Scale spacecraft, with the objective of comparing their performance. The first approach is to evaluate the WalĂ©n relation as a jump condition, by determining the level of agreement between the change in plasma velocity across a discontinuity with the corresponding change in the AlfvĂ©n velocity. For this purpose, we use a recently developed quality index, Q, for which Q=±1 indicates perfect agreement. As was the case for a previously used quality index, ΔV∗, this new index employs data from two carefully chosen measurement times, located on opposite sides of the discontinuity. The second approach is to check the level of AlfvĂ©nicity of the flow for all measurements between those two points. Here, the quality index used is Wsl, the slope of the regression line in a scatter plot of plasma velocity components (after transformation into the deHoffmann-Teller frame) versus the corresponding AlfvĂ©n velocity components, with Wsl=±1 indicating perfect agreement. For the two indices to give comparable numbers of rotational discontinuity candidates, a substantially higher threshold value is needed for |Q| than for |Wsl|. Even so, the events selected by the two methods are not identical. We also identify statistical relationships between Wsl and its associated correlation coefficient, Wcc, as well as between Wsl and Q and between Wsl and ΔV∗

    The Polar Wind Modulated by the Spatial Inhomogeneity of the Strength of the Earth's Magnetic Field

    No full text
    When the geomagnetic field is weak, the small mirror force allows precipitating charged particles to deposit energy in the ionosphere. This leads to an increase in ionospheric outflow from the Earth's polar cap region, but such an effect has not been previously observed because the energies of the ions of the polar ionospheric outflow are too low, making it difficult to detect the low‐energy ions with a positively charged spacecraft. In this study, we found an anticorrelation between ionospheric outflow and the strength of the Earth's magnetic field. Our results suggest that the electron precipitation through the polar rain can be a main energy source of the polar wind during periods of high levels of solar activity. The decreased magnetic field due to spatial inhomogeneity of the Earth's magnetic field and its effect on outflow can be used to study the outflow in history when the magnetic field was at similar levels
    corecore