23 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    A depauperate immune repertoire precedes evolution of sociality in bees

    Get PDF
    Background Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. Results We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman’s principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. Conclusions The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts

    Improved Detection of Cytokines Produced by Invariant NKT Cells

    No full text
    Abstract Invariant Natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after in vivo activation, allowing for the direct detection of a number of cytokines directly ex vivo. However, for some cytokines this approach is suboptimal. Here, we report technical variations that allow the improved detection of IL-4, IL-10, IL-13 and IL-17A ex vivo. Furthermore, we describe an alternative approach for stimulation of iNKT cells in vitro that allows a significantly improved detection of cytokines produced by iNKT cells. Together, these protocols allow the detection of iNKT cell cytokines ex vivo and in vitro with increased sensitivity

    Right atrial myocardial deformation by two-dimensional speckle tracking echocardiography predicts recurrence in paroxysmal atrial fibrillation.

    No full text
    BACKGROUND: Atrial fibrillation (AF) is a bi-atrial disease yet little attention has been given to right heart function in AF. We propose that the assessment of right atrial (RA) and right ventricular function (RV) using two-dimensional speckle tracking echocardiography (2D-STE) could be valuable in predicting AF recurrence in patients with paroxysmal AF (PAF). METHODS: Thirty patients with PAF were prospectively recruited from a dedicated AF clinic. Right atrial size, volume, and area and RV dimensions were analyzed along with RA and RV strain derived from 2D-STE at baseline and at 3 and 12 months. RESULTS: Higher RA booster strain independently predicted sinus rhythm (SR) maintenance for up to 1 year (P = 0.001). RV strain was impaired in patients with recurrent AF compared to those in SR (P < 0.05) but did not predict AF recurrence. Two-dimensional STE for RA and RV function was simple to perform with excellent reproducibility (adjusted R 2 0.92-0.99). CONCLUSIONS: Two-dimensional STE is useful and highly reproducible in assessing right heart function in AF patients. RA booster strain function was predictive of sinus rhythm maintenance for up to 1 year
    corecore