128 research outputs found

    Lysine-Arginine Advanced Glycation End-Product Cross-links and the Effect on Collagen Structure: A Molecular Dynamics Study

    Get PDF
    The accumulation of advanced glycation end-products is a fundamental process that is central to age-related decline in musculoskeletal tissues and locomotor system function and other collagen-rich tissues. However, although computational studies of advanced glycation end-product cross-links could be immensely valuable, this area remains largely unexplored given the limited availability of structural parameters for the derivation of force fields for Molecular Dynamics simulations. In this article, we present the bonded force constants, atomic partial charges and geometry of the arginine-lysine cross-links DOGDIC, GODIC, and MODIC. We have performed in vacuo Molecular Dynamics simulations to validate their implementation against quantum mechanical frequency calculations. A DOGDIC advanced glycation endproduct cross-link was then inserted into a model collagen fibril to explore structural changes of collagen and dynamics in interstitial water. Unlike our previous studies of glucosepane, our findings suggest that intra-collagen DOGDIC cross-links furthers intra-collagen peptide hydrogen-bonding and does not promote the diffusion of water through the collagen triple helices

    Lysine–arginine advanced glycation end‐product cross‐links and the effect on collagen structure: A molecular dynamics study

    Get PDF
    The accumulation of advanced glycation end‐products is a fundamental process that is central to age‐related decline in musculoskeletal tissues and locomotor system function and other collagen‐rich tissues. However, although computational studies of advanced glycation end‐product cross‐links could be immensely valuable, this area remains largely unexplored given the limited availability of structural parameters for the derivation of force fields for Molecular Dynamics simulations. In this article, we present the bonded force constants, atomic partial charges and geometry of the arginine‐lysine cross‐links DOGDIC, GODIC, and MODIC. We have performed in vacuo Molecular Dynamics simulations to validate their implementation against quantum mechanical frequency calculations. A DOGDIC advanced glycation end‐product cross‐link was then inserted into a model collagen fibril to explore structural changes of collagen and dynamics in interstitial water. Unlike our previous studies of glucosepane, our findings suggest that intra‐collagen DOGDIC cross‐links furthers intra‐collagen peptide hydrogen‐bonding and does not promote the diffusion of water through the collagen triple helices

    All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

    Get PDF
    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 degrees C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement

    Fructose Modulates Cardiomyocyte Excitation-Contraction Coupling and Ca2+ Handling In Vitro

    Get PDF
    BACKGROUND: High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE: The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS: The functional effects of fructose on isolated adult rat cardiomyocyte contractility and CaÂČâș handling were evaluated under physiological conditions (37°C, 2 mM CaÂČâș, HEPES buffer, 4 Hz stimulation) using video edge detection and microfluorimetry (Fura2) methods. Compared with control glucose (11 mM) superfusate, 2-deoxyglucose (2 DG, 11 mM) substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05) and this effect was completely abrogated with fructose supplementation (11 mM). Similarly, fructose prevented the CaÂČâș transient delay induced by exposure to 2 DG (time to peak CaÂČâș transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05). The presence of the fructose transporter, GLUT5 (Slc2a5) was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION: This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Multiple Loci Are Associated with Dilated Cardiomyopathy in Irish Wolfhounds

    Get PDF
    Dilated cardiomyopathy (DCM) is a highly prevalent and often lethal disease in Irish wolfhounds. Complex segregation analysis indicated different loci involved in pathogenesis. Linear fixed and mixed models were used for the genome-wide association study. Using 106 DCM cases and 84 controls we identified one SNP significantly associated with DCM on CFA37 and five SNPs suggestively associated with DCM on CFA1, 10, 15, 21 and 17. On CFA37 MOGAT1 and ACSL3 two enzymes of the lipid metabolism were located near the identified SNP

    Employment status and work-related difficulties in stomach cancer survivors compared with the general population

    Get PDF
    Little was known about work situation and work-related difficulties, including housework after stomach cancer diagnosis. We aimed to compare employment status and work-related difficulties between stomach cancer survivors and the general population. We enrolled 408 stomach cancer survivors from two hospitals 28 months after diagnosis and 994 representative volunteers from the general population from 15 geographic districts. Working was defined as being employed (including self-employed) and nonworking as being retired or a homemaker. Nonworking was significantly higher among stomach cancer survivors (46.6%) than in the general population (36.5%). Compared with the general population, the survivors had more fatigue in performing both housework (adjusted odds ratio (aOR)=2.08; 95% confidence interval (95% CI)=1.01–4.29) and gainful work (aOR=4.02; 2.55–6.33). More cancer survivors had reduced working hours (aOR=1.42; 95% CI=4.60–28.35) and reduced work-related ability (aOR=6.11; 95% CI=3.64–10.27) than did the general population. The association of nonworking with older age and being female was significantly more positive for survivors than for the general population. Among survivors, poorer Eastern Cooperation Oncology Group Performance Status and receiving total gastrectomy were positively associated with nonworking. Stomach cancer survivors experienced more difficulties in both housework and gainful employment than did the general population. Our findings on stomach cancer survivors' work-related difficulties and the predictors of nonworking will help physicians guide patients towards more realistic postsurgical employment plans

    Spatially modulated structural colour in bird feathers.

    Get PDF
    Eurasian Jay (Garrulus glandarius) feathers display periodic variations in the reflected colour from white through light blue, dark blue and black. We find the structures responsible for the colour are continuous in their size and spatially controlled by the degree of spinodal phase separation in the corresponding region of the feather barb. Blue structures have a well-defined broadband ultra-violet (UV) to blue wavelength distribution; the corresponding nanostructure has characteristic spinodal morphology with a lengthscale of order 150 nm. White regions have a larger 200 nm nanostructure, consistent with a spinodal process that has coarsened further, yielding broader wavelength white reflectance. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD
    • 

    corecore