765 research outputs found

    Emergent complex neural dynamics

    Full text link
    A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain

    On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry

    Get PDF
    The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na+ for H+ ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves

    Effect of hydrocephalus on rat brain extracellular compartment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cerebral cortex may be compressed in hydrocephalus and some experiments suggest that movement of extracellular substances through the cortex is impaired. We hypothesized that the extracellular compartment is reduced in size and that the composition of the extracellular compartment changes in rat brains with kaolin-induced hydrocephalus.</p> <p>Methods</p> <p>We studied neonatal (newborn) onset hydrocephalus for 1 or 3 weeks, juvenile (3 weeks) onset hydrocephalus for 3–4 weeks or 9 months, and young adult (10 weeks) onset hydrocephalus for 2 weeks, after kaolin injection. Freeze substitution electron microscopy was used to measure the size of the extracellular compartment. Western blotting and immunohistochemistry with quantitative image densitometry was used to study the extracellular matrix constituents, phosphacan, neurocan, NG2, decorin, biglycan, and laminin.</p> <p>Results</p> <p>The extracellular space in cortical layer 1 was reduced significantly from 16.5 to 9.6% in adult rats with 2 weeks duration hydrocephalus. Western blot and immunohistochemistry showed that neurocan increased only in the periventricular white matter following neonatal induction and 3 weeks duration hydrocephalus. The same rats showed mild decorin increases in white matter and around cortical neurons. Juvenile and adult onset hydrocephalus was associated with no significant changes.</p> <p>Conclusion</p> <p>We conclude that compositional changes in the extracellular compartment are negligible in cerebral cortex of hydrocephalic rats at various ages. Therefore, the functional change related to extracellular fluid flow should be reversible.</p

    The Lyman Alpha Forest in the Spectra of QSOs

    Get PDF
    Observations of redshifted Lyman alpha forest absorption in the spectra of quasistellar objects (QSOs) provide a highly sensitive probe of the distribution of gaseous matter in the universe. Over the past two decades optical spectroscopy with large ground-based telescopes, and more recently ultraviolet spectroscopy from space have yielded a wealth of information on what appears to be a gaseous, photoionized intergalactic medium, partly enriched by the products of stellar nucleosynthesis, residing in coherent structures over many hundreds of kiloparsecs. Recent progress with cosmological hydro-simulations based on hierarchical structure formation models has led to important insights into the physical structures giving rise to the forest. If these ideas are correct, a truely inter- and proto-galactic medium [at high redshift (z ~ 3), the main repository of baryons] collapses under the influence of dark matter gravity into flattened or filamentary structures, which are seen in absorption against background QSOs. With decreasing redshift, galaxies forming in the denser regions, may contribute an increasing part of the Lyman alpha absorption cross-section. Comparisons between large data samples from the new generation of telescopes and artificial Lyman alpha forest spectra from cosmological simulations promise to become a useful cosmological tool.Comment: latex plus three postscript figures, uses psfig,sty; Annual Review of Astronomy and Astrophysics 1998, vol. 36 (in press

    General Relativistic Gravity Gradiometry

    Full text link
    Gravity gradiometry within the framework of the general theory of relativity involves the measurement of the elements of the relativistic tidal matrix, which is theoretically obtained via the projection of the spacetime curvature tensor upon the nonrotating orthonormal tetrad frame of a geodesic observer. The behavior of the measured components of the curvature tensor under Lorentz boosts is briefly described in connection with the existence of certain special tidal directions. Relativistic gravity gradiometry in the exterior gravitational field of a rotating mass is discussed and a gravitomagnetic beat effect along an inclined spherical geodesic orbit is elucidated.Comment: 18 pages, invited contribution to appear in "Relativistic Geodesy: Foundations and Applications", D. Puetzfeld et al. (eds.), 2018; v2: matches version published in: D. Puetzfeld and C. L\"ammerzahl (eds.) "Relativistic Geodesy" (Springer, Cham, 2019), pp. 143-15

    Swarming Behavior in Plant Roots

    Get PDF
    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming

    Perceived threat predicts the neural sequelae of combat stress

    Get PDF
    Exposure to severe stressors increases the risk for psychiatric disorders in vulnerable individuals, but can lead to positive outcomes for others. However, it remains unknown how severe stress affects neural functioning in humans and what factors mediate individual differences in the neural sequelae of stress. The amygdala is a key brain region involved in threat detection and fear regulation, and previous animal studies have suggested that stress sensitizes amygdala responsivity and reduces its regulation by the prefrontal cortex. In this study, we used a prospective design to investigate the consequences of severe stress in soldiers before and after deployment to a combat zone. We found that combat stress increased amygdala and insula reactivity to biologically salient stimuli across the group of combat-exposed individuals. In contrast, its influence on amygdala coupling with the insula and dorsal anterior cingulate cortex was dependent on perceived threat, rather than actual exposure, suggesting that threat appraisal affects interoceptive awareness and amygdala regulation. Our results demonstrate that combat stress has sustained consequences on neural responsivity, and suggest a key role for the appraisal of threat on an amygdala-centered neural network in the aftermath of severe stress

    Coevolution of dispersal in a parasitoid-host system

    Get PDF
    Interspecific interactions and the evolution of dispersal are both of interest when considering the potential impact of habitat fragmentation on community ecology, but the interaction between these processes is not well studied. We address this by considering the coevolution of dispersal strategies in a host-parasitoid system. An individual-based host-parasitoid metapopulation model was constructed for a patchy environment, allowing for evolution in dispersal rates of both species. Highly rarefied environments with few suitable patches selected against dispersal in both species, as did relatively static environments. Provided that parasitoids persist, all parameter values studied led to stable equilibria in dispersal rates for both species. There was a tendency towards higher dispersal rates in parasitoids due to the asymmetric relationships of the two species to the patches: vacant patches are most valuable for hosts, but unsuitable for parasitoids, which require an established host population to reproduce. High host dispersal rate was favoured by high host population growth rate, and in the parasitoid by high growth rates in both species

    Height and timing of growth spurt during puberty in young people living with vertically acquired HIV in Europe and Thailand.

    Get PDF
    OBJECTIVE: The aim of this study was to describe growth during puberty in young people with vertically acquired HIV. DESIGN: Pooled data from 12 paediatric HIV cohorts in Europe and Thailand. METHODS: One thousand and ninety-four children initiating a nonnucleoside reverse transcriptase inhibitor or boosted protease inhibitor based regimen aged 1-10 years were included. Super Imposition by Translation And Rotation (SITAR) models described growth from age 8 years using three parameters (average height, timing and shape of the growth spurt), dependent on age and height-for-age z-score (HAZ) (WHO references) at antiretroviral therapy (ART) initiation. Multivariate regression explored characteristics associated with these three parameters. RESULTS: At ART initiation, median age and HAZ was 6.4 [interquartile range (IQR): 2.8, 9.0] years and -1.2 (IQR: -2.3 to -0.2), respectively. Median follow-up was 9.1 (IQR: 6.9, 11.4) years. In girls, older age and lower HAZ at ART initiation were independently associated with a growth spurt which occurred 0.41 (95% confidence interval 0.20-0.62) years later in children starting ART age 6 to 10 years compared with 1 to 2 years and 1.50 (1.21-1.78) years later in those starting with HAZ less than -3 compared with HAZ at least -1. Later growth spurts in girls resulted in continued height growth into later adolescence. In boys starting ART with HAZ less than -1, growth spurts were later in children starting ART in the oldest age group, but for HAZ at least -1, there was no association with age. Girls and boys who initiated ART with HAZ at least -1 maintained a similar height to the WHO reference mean. CONCLUSION: Stunting at ART initiation was associated with later growth spurts in girls. Children with HAZ at least -1 at ART initiation grew in height at the level expected in HIV negative children of a comparable age

    Detection of IL28B SNP DNA from Buccal Epithelial Cells, Small Amounts of Serum, and Dried Blood Spots

    Get PDF
    Background &amp; Aims: Point mutations in the coding region of the interleukin 28 gene (rs12979860) have recently been identified for predicting the outcome of treatment of hepatitis C virus infection. This polymorphism detection was based on whole blood DNA extraction. Alternatively, DNA for genetic diagnosis has been derived from buccal epithelial cells (BEC), dried blood spots (DBS), and genomic DNA from serum. The aim of the study was to investigate the reliability and accuracy of alternative routes of testing for single nucleotide polymorphism allele rs12979860CC. Methods: Blood, plasma, and sera samples from 200 patients were extracted (400 mL). Buccal smears were tested using an FTA card. To simulate postal delay, we tested the influence of storage at ambient temperature on the different sources of DNA at five time points (baseline, 48 h, 6 days, 9 days, and 12 days) Results: There was 100 % concordance between blood, plasma, sera, and BEC, validating the use of DNA extracted from BEC collected on cytology brushes for genetic testing. Genetic variations in HPTR1 gene were detected using smear technique in blood smear (3620 copies) as well as in buccal smears (5870 copies). These results are similar to those for whole blood diluted at 1/10. A minimum of 0.04 mL, 4 mL, and 40 mL was necessary to obtain exploitable results respectively for whole blood, sera, and plasma. No significant variation between each time point was observed for the different sources of DNA. IL28B SNPs analysis at these different time points showed the same results using the four sources of DNA
    • …
    corecore