354 research outputs found

    Catecholaminergic depletion in nucleus accumbens enhances trace conditioning

    Get PDF
    Purpose: To examine the effect of dopamine depletion in nucleus accumbens on trace conditioning; to distinguish the role of core and shell sub-regions, as far as possible. Material/Methods: 6-hydroxydopamine was used to lesion dopamine terminals within the core and shell accumbens. Experiment 1 assessed conditioning to a tone conditioned stimulus that had previously been paired with footshock (unconditioned stimulus) at a 30s trace interval. Experiment 2 subsequently assessed contiguous conditioning (at 0s trace) using a light conditioned stimulus directly followed by the unconditioned stimulus. Results: Both sham and shell-lesioned animals showed the normal trace effect of reduced conditioning to the trace conditioned stimulus but 6-hydroxydopamine injections targeted on the core subregion of the nucleus accumbens abolished this effect and enhanced conditioning to the trace conditioned stimulus. However, the depletion produced by this lesion placement extended to the shell. In Experiment 2 (at 0s trace), there was no effect of either lesion placement as all animals showed comparable levels of conditioning to the light conditioned stimulus. Neurochemical analysis across core, shell and comparison regions showed some effects on noradrenalin as well as dopamine. Conclusions: The pattern of changes in noradrenalin did not systematically relate to the observed behavioural changes after core injections. The pattern of changes in dopamine suggested that depletion in core mediated the increased conditioning to the trace conditioned stimulus seen in the present study. However, the comparison depletion restricted to the shell subregion was less substantial, and a role for secondarily affected brain regions cannot be excluded

    Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions

    Get PDF
    Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations

    Overnight switch from ropinirole to transdermal rotigotine patch in patients with Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent trial involving predominantly Caucasian subjects with Parkinson Disease (PD) showed switching overnight from an oral dopaminergic agonist to the rotigotine patch was well tolerated without loss of efficacy. However, no such data have been generated for Korean patients.</p> <p>Methods</p> <p>This open-label multicenter trial investigated PD patients whose symptoms were not satisfactorily controlled by ropinirole, at a total daily dose of 3 mg to 12 mg, taken as monotherapy or as an adjunct to levodopa. Switching treatment from oral ropinirole to transdermal rotigotine was carried out overnight, with a dosage ratio of 1.5:1. After a 28-day treatment period, the safety and tolerability of switching was evaluated. Due to the exploratory nature of this trial, the effects of rotigotine on motor and nonmotor symptoms of PD were analyzed in a descriptive manner.</p> <p>Results</p> <p>Of the 116 subjects who received at least one treatment, 99 (85%) completed the 28-day trial period. Dose adjustments were required for 11 subjects who completed the treatment period. A total of 76 treatment-emergent adverse events (AEs) occurred in 45 subjects. No subject experienced a serious AE. Thirteen subjects discontinued rotigotine prematurely due to AEs. Efficacy results suggested improvements in both motor and nonmotor symptoms and quality of life after switching. Fifty-two subjects (46%) agreed that they preferred using the patch over oral medications, while 31 (28%) disagreed.</p> <p>Conclusions</p> <p>Switching treatment overnight from oral ropinirole to transdermal rotigotine patch, using a dosage ratio of 1.5:1, was well tolerated in Korean patients with no loss of efficacy.</p> <p>Trial registration</p> <p>This trial is registered with the ClincalTrails.gov Registry (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00593606">NCT00593606</a>).</p

    Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays

    Get PDF
    One-dimensional crystal growth enables the epitaxial integration of III-V compound semiconductors onto a silicon (Si) substrate despite significant lattice mismatch. Here, we report a short-wavelength infrared (SWIR, 1.4-3 mu m) photodetector that employs InAs nanowires (NWs) grown on Si. The wafer-scale epitaxial InAs NWs form on the Si substrate without a metal catalyst or pattern assistance; thus, the growth is free of metal-atom-induced contaminations, and is also cost-effective. InAs NW arrays with an average height of 50 mu m provide excellent anti-reflective and light trapping properties over a wide wavelength range. The photodetector exhibits a peak detectivity of 1.9 x 10(8) cm.Hz(1/2)/W for the SWIR band at 77 K and operates at temperatures as high as 220 K. The SWIR photodetector on the Si platform demonstrated in this study is promising for future low-cost optical sensors and Si photonicsopen0

    Time-dependent response of a zonally averaged ocean–atmosphere–sea ice model to Milankovitch forcing

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer-Verlag for personal use, not for redistribution. The definitive version was published in Climate Dynamics 6 (2010): 763-779, doi:10.1007/s00382-010-0790-6.An ocean-atmosphere-sea ice model is developed to explore the time-dependent response of climate to Milankovitch forcing for the time interval 5-3 Myr BP. The ocean component is a zonally averaged model of the circulation in five basins (Arctic, Atlantic, Indian, Pacific, and Southern Oceans). The atmospheric component is a one-dimensional (latitudinal) energy balance model, and the sea-ice component is a thermodynamic model. Two numerical experiments are conducted. The first experiment does not include sea ice and the Arctic Ocean; the second experiment does. Results from the two experiments are used to investigate (i) the response of annual mean surface air and ocean temperatures to Milankovitch forcing, and (ii) the role of sea ice in this response. In both experiments, the response of air temperature is dominated by obliquity cycles at most latitudes. On the other hand, the response of ocean temperature varies with latitude and depth. Deep water formed between 45°N-65°N in the Atlantic Ocean mainly responds to precession. In contrast, deep water formed south of 60°S responds to obliquity when sea ice is not included. Sea ice acts as a time-integrator of summer insolation changes such that annual mean sea-ice conditions mainly respond to obliquity. Thus, in the presence of sea ice, air temperature changes over the sea ice are amplified, and temperature changes in deep water of southern origin are suppressed since water below sea ice is kept near the freezing point.This work was supported by an NSERC Discovery Grant awarded to L.A.M. We also thank GEC3 for a Network Grant

    Potential climatic transitions with profound impact on Europe

    Get PDF
    We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/

    Cancer-associated cells release citrate to support tumour metastatic progression

    Get PDF
    Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter’s major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Linking microarray reporters with protein functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways.</p> <p>Results</p> <p>This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways.</p> <p>Conclusion</p> <p>Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.</p
    corecore