100 research outputs found

    A combination of methods needed to assess the actual use of provisioning ecosystem services

    Get PDF
    Failure to recognize that potential provisioning ecosystem services are not necessarily collected and used by people may have important consequences for management of land and resources. Accounting for people's actual use of ecosystem services in decision making processes requires a robust methodological approach that goes beyond mapping the presence of ecosystem services. But no such universally accepted method exists, and there are several shortcomings of existing methods such as the application of land use/cover as a proxy for provisioning ecosystem service availability and surveys based on respondents' recall to assess people's collection of e.g. wild food. By combining four complementary methods and applying these to the shifting cultivation systems of Laos, we show how people’s actual use of ecosystem services from agricultural fields differs from ecosystem service availability. Our study is the first in Southeast Asia to combine plot monitoring, collection diaries, repeat interviews, and participant observation. By applying these multiple methods borrowed from anthropology and botany among other research domains, the study illustrates that no single method is sufficient on its own. It is of key importance for scientists to adopt methods that can account for both availability of various services and actual use of those services

    A Crosslinking Analysis of GAP-43 Interactions with Other Proteins in Differentiated N1E-115 Cells

    Get PDF
    It has been suggested that GAP-43 (growth-associated protein) binds to various proteins in growing neurons as part of its mechanism of action. To test this hypothesis in vivo, differentiated N1E-115 neuroblastoma cells were labeled with [35S]-amino acids and were treated with a cleavable crosslinking reagent. The cells were lysed in detergent and the lysates were centrifuged at 100,000 × g to isolate crosslinked complexes. Following cleavage of the crosslinks and analysis by two-dimensional gel electrophoresis, it was found that the crosslinker increased the level of various proteins, and particularly actin, in this pellet fraction. However, GAP-43 was not present, suggesting that GAP-43 was not extensively crosslinked to proteins of the cytoskeleton and membrane skeleton and did not sediment with them. GAP-43 also did not sediment with the membrane skeleton following nonionic detergent lysis. Calmodulin, but not actin or other proposed interaction partners, co-immunoprecipitated with GAP-43 from the 100,000 × g supernatant following crosslinker addition to cells or cell lysates. Faint spots at 34 kDa and 60 kDa were also present. Additional GAP-43 was recovered from GAP-43 immunoprecipitation supernatants with anti-calmodulin but not with anti-actin. The results suggest that GAP-43 is not present in complexes with actin or other membrane skeletal or cytoskeletal proteins in these cells, but it is nevertheless possible that a small fraction of the total GAP-43 may interact with other proteins

    Dynamic purine signaling and metabolism during neutrophil–endothelial interactions

    Get PDF
    During episodes of hypoxia and inflammation, polymorphonuclear leukocytes (PMN) move into underlying tissues by initially passing between endothelial cells that line the inner surface of blood vessels (transendothelial migration, TEM). TEM creates the potential for disturbances in vascular barrier and concomitant loss of extravascular fluid and resultant edema. Recent studies have demonstrated a crucial role for nucleotide metabolism and nucleoside signaling during inflammation. These studies have implicated multiple adenine nucleotides as endogenous tissue protective mechanisms invivo. Here, we review the functional components of vascular barrier, identify strategies for increasing nucleotide generation and nucleoside signaling, and discuss potential therapeutic targets to regulate the vascular barrier during inflammation

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty

    Get PDF
    Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty
    • 

    corecore