3,440 research outputs found

    Prognostic Outcomes and Risk Factors for Patients with Renal Cell Carcinoma and Venous Tumor Thrombus after Radical Nephrectomy and Thrombectomy: The Prognostic Significance of Venous Tumor Thrombus Level.

    Get PDF
    IntroductionTo evaluate the prognostic outcomes and risk factors for renal cell carcinoma (RCC) patients with venous tumor thrombus in China.Materials and methodsWe reviewed the clinical information of 169 patients who underwent radical nephrectomy and thrombectomy. Overall and cancer-specific survival rates were analyzed. Univariate and multivariate analyses were used to investigate the potential prognostic factors.ResultsThe median survival time was 63 months. The five-year overall survival and cancer-specific survival rate were 53.6% and 54.4% for all patients. For all patients, significant survival difference was only observed between early (below hepatic vein) and advanced (above hepatic vein) tumor thrombus. However, significant differences existed between both RV/IVC and early/advanced tumor thrombus groups in N0M0 patients. Multivariate analysis demonstrated that higher tumor thrombus level (p = 0.016, RR = 1.58), N (p = 0.013, RR = 2.60), and M (p < 0.001, RR = 4.14) stages and adrenal gland invasion (p = 0.001, RR = 4.91) were the most significant negative prognostic predictors.ConclusionsIn this study, we reported most cases of RCC patients with venous extension in China. We proved that patients with RCC and venous tumor thrombus may have relative promising long-term survival rate, especially those with early tumor thrombus

    Targeted antimicrobial therapy against Streptococcus mutans establishes protective non-cariogenic oral biofilms and reduces subsequent infection.

    Get PDF
    AimDental biofilms are complex communities composed largely of harmless bacteria. Certain pathogenic species including Streptococcus mutans (S. mutans) can become predominant when host factors such as dietary sucrose intake imbalance the biofilm ecology. Current approaches to control S. mutans infection are not pathogen-specific and eliminate the entire oral community along with any protective benefits provided. Here, we tested the hypothesis that removal of S. mutans from the oral community through targeted antimicrobial therapy achieves protection against subsequent S. mutans colonization.MethodologyControlled amounts of S. mutans were mixed with S. mutans-free saliva, grown into biofilms and visualized by antibody staining and cfu quantization. Two specifically-targeted antimicrobial peptides (STAMPs) against S. mutans were tested for their ability to reduce S. mutans biofilm incorporation upon treatment of the inocula. The resulting biofilms were also evaluated for their ability to resist subsequent exogenous S. mutans colonization.ResultsS. mutans colonization was considerably reduced ( +/- 0.4 fold reduction, P=0.01) when the surface was preoccupied with saliva-derived biofilms. Furthermore, treatment with S. mutans-specific STAMPs yielded S. mutans-deficient biofilms with significant protection against further S. mutans colonization (5 minutes treatment: 38 +/- 13 fold reduction P=0.01; 16 hours treatment: 96 +/- 28 fold reduction P=0.07).ConclusionS. mutans infection is reduced by the presence of existing biofilms. Thus maintaining a healthy or "normal" biofilm through targeted antimicrobial therapy (such as the STAMPs) could represent an effective strategy for the treatment and prevention of S. mutans colonization in the oral cavity and caries progression

    Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow

    Get PDF
    In this paper, three-dimensional (3D) multi-relaxation time (MRT) lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT models the rates of relaxation processes owing to collisions of particle populations may be independently adjusted. As a result, the MRT models offer a significant improvement in numerical stability of the LB method for simulating fluids with lower viscosities. We show through the Chapman-Enskog multiscale analysis that the continuum limit behavior of 3D MRT LB models corresponds to that of the macroscopic dynamical equations for multiphase flow. We extend the 3D MRT LB models developed to represent multiphase flow with reduced compressibility effects. The multiphase models are evaluated by verifying the Laplace-Young relation for static drops and the frequency of oscillations of drops. The results show satisfactory agreement with available data and significant gains in numerical stability.Comment: Accepted for publication in the Journal of Computational Physic

    Interaction analysis under misspecification of main effects: Some common mistakes and simple solutions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154951/1/sim8505_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154951/2/sim8505.pd

    Coulomb Zero-Bias Anomaly: A Semiclassical Calculation

    Full text link
    Effective action is proposed for the problem of Coulomb blocking of tunneling. The approach is well suited to deal with the ``strong coupling'' situation near zero bias, where perturbation theory diverges. By a semiclassical treatment, we reduce the physics to that of electrodynamics in imaginary time, and express the anomaly through exact conductivity of the system σ(ω,q)\sigma(\omega, q) and exact interaction. For the diffusive anomaly, we compare the result with the perturbation theory of Altshuler, Aronov, and Lee. For the metal-insulator transition we derive exact relation of the anomaly and critical exponent of conductivity.Comment: 9 pages, RevTeX 3.

    Onset of rigidty in glasses: from random to self-organized networks

    Full text link
    We review in this paper the signatures of a new elastic phase that is found in glasses with selected compositions. It is shown that in contrast with random networks, where rigidity percolates at a single threshold, networks that are able to self-organize to avoid stress will remain in an almost stress- free state during a compositional interval, an intermediate phase, that is bounded by a flexible phase and a stressed rigid phase. We report the experimental signatures and describe the theoretical efforts that have been accomplished to characterize the intermediate phase. We illustrate one of the methods used in more detail with the example of Group III chalcogenides and finally suggest further possible experimental signatures of self-organization.Comment: 27 pages, 6 figures, Proceedings of the Conference on Non-Crystalline Materials 10, to appear in Journal of Non-Crystalline Solid

    How the other half lives: CRISPR-Cas's influence on bacteriophages

    Full text link
    CRISPR-Cas is a genetic adaptive immune system unique to prokaryotic cells used to combat phage and plasmid threats. The host cell adapts by incorporating DNA sequences from invading phages or plasmids into its CRISPR locus as spacers. These spacers are expressed as mobile surveillance RNAs that direct CRISPR-associated (Cas) proteins to protect against subsequent attack by the same phages or plasmids. The threat from mobile genetic elements inevitably shapes the CRISPR loci of archaea and bacteria, and simultaneously the CRISPR-Cas immune system drives evolution of these invaders. Here we highlight our recent work, as well as that of others, that seeks to understand phage mechanisms of CRISPR-Cas evasion and conditions for population coexistence of phages with CRISPR-protected prokaryotes.Comment: 24 pages, 8 figure
    corecore