1,295 research outputs found

    The Simplest Dark-Matter Model, CDMS II Results, and Higgs Detection at LHC

    Get PDF
    The direct-search experiment for dark matter performed by the CDMS II Collaboration has observed two candidate events. Although these events cannot be interpreted as significant evidence for the presence of weakly interacting massive particle (WIMP) dark matter (DM), the total CDMS II data have led to an improved upper-limit on the WIMP-nucleon spin-independent cross-section. We study some implications of these results for the simplest WIMP DM model, the SM+D, which extends the standard model (SM) by the addition of a real SM-singlet scalar field dubbed darkon to play the role of the DM. We find that, although the CDMS II data rule out a sizable portion of parameter space of the model, a large part of the parameter space is still allowed. We obtain strong correlations among the darkon mass, darkon-nucleon cross-section, mass of the Higgs boson, and branching ratio of its invisible decay. We point out that measurements of the Higgs invisible branching-ratio at the LHC can lift some possible ambiguities in determining the darkon mass from direct DM searches.Comment: 10 pages, 5 figures; results updated with WMAP7 input, references added, conclusions unchanged, to match published versio

    Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice

    Get PDF
    BACKGROUND: Cancer cachexia is a metabolic wasting syndrome that is strongly associated with a poor prognosis. The initiating factors causing fat and muscle loss are largely unknown. Previously, we found that leukaemia inhibitory factor (LIF) secreted by C26 colon carcinoma cells was responsible for atrophy in treated myotubes. In the present study, we tested whether C26 tumour‐derived LIF is required for cancer cachexia in mice by knockout of Lif in C26 cells. METHODS: A C26 Lif null tumour cell line was made using CRISPR‐Cas9. Measurements of cachexia were compared in mice inoculated with C26 vs. C26^Lif−/− tumour cells, and atrophy was compared in myotubes treated with medium from C26 vs. C26^Lif−/− tumour cells. Levels of 25 cytokines/chemokines were compared in serum of mice bearing C26 vs. C26^Lif−/− tumours and in the medium from these tumour cell lines. RESULTS: At study endpoint, C26 mice showed outward signs of sickness while mice with C26^Lif−/− tumours appeared healthy. Mice with C26^Lif−/− tumours showed a 55–75% amelioration of body weight loss, muscle loss, fat loss, and splenomegaly compared with mice with C26 tumours (P < 0.05). The heart was not affected by LIF levels because the loss of cardiac mass was the same in C26 and C^26Lif−/− tumour‐bearing mice. LIF levels in mouse serum was entirely dependent on secretion from the tumour cells. Serum levels of interleukin‐6 and G‐CSF were increased by 79‐fold and 68‐fold, respectively, in C26 mice but only by five‐fold and two‐fold, respectively, in C26^Lif−/− mice, suggesting that interleukin‐6 and G‐CSF increases are dependent on tumour‐derived LIF. CONCLUSIONS: This study shows the first use of CRISPR‐Cas9 knockout of a candidate cachexia factor in tumour cells. The results provide direct evidence for LIF as a major cachexia initiating factor for the C26 tumour in vivo. Tumour‐derived LIF was also a regulator of multiple cytokines in C26 tumour cells and in C26 tumour‐bearing mice. The identification of tumour‐derived factors such as LIF that initiate the cachectic process is immediately applicable to the development of therapeutics to treat cachexia. This is a proof of principle for studies that when carried out in human cells, will make possible an understanding of the factors causing cachexia in a patient‐specific manner.This work was supported by NIAMS R01AR060217 to S. C. K. and R. W. J. and NIAMS R01 R01AR060209 to A. R. J., and by the Dudley Allen Sargent Research Fund. The authors certify that they comply with the ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017.40 (R01AR060217 - NIAMS; R01 R01AR060209 - NIAMS; Dudley Allen Sargent Research Fund)Published versio

    Reconstruction of a Nonminimal Coupling Theory with Scale-invariant Power Spectrum

    Full text link
    A nonminimal coupling single scalar field theory, when transformed from Jordan frame to Einstein frame, can act like a minimal coupling one. Making use of this property, we investigate how a nonminimal coupling theory with scale-invariant power spectrum could be reconstructed from its minimal coupling counterpart, which can be applied in the early universe. Thanks to the coupling to gravity, the equation of state of our universe for a scale-invariant power spectrum can be relaxed, and the relation between the parameters in the action can be obtained. This approach also provides a means to address the Big-Bang puzzles and anisotropy problem in the nonminimal coupling model within Jordan frame. Due to the equivalence between the two frames, one may be able to find models that are free of the horizon, flatness, singularity as well as anisotropy problems.Comment: 31 pages, 4 figure

    Microscopic Aspects of Stretched Exponential Relaxation (SER) in Homogeneous Molecular and Network Glasses and Polymers

    Full text link
    Because the theory of SER is still a work in progress, the phenomenon itself can be said to be the oldest unsolved problem in science, as it started with Kohlrausch in 1847. Many electrical and optical phenomena exhibit SER with probe relaxation I(t) ~ exp[-(t/{\tau}){\beta}], with 0 < {\beta} < 1. Here {\tau} is a material-sensitive parameter, useful for discussing chemical trends. The "shape" parameter {\beta} is dimensionless and plays the role of a non-equilibrium scaling exponent; its value, especially in glasses, is both practically useful and theoretically significant. The mathematical complexity of SER is such that rigorous derivations of this peculiar function were not achieved until the 1970's. The focus of much of the 1970's pioneering work was spatial relaxation of electronic charge, but SER is a universal phenomenon, and today atomic and molecular relaxation of glasses and deeply supercooled liquids provide the most reliable data. As the data base grew, the need for a quantitative theory increased; this need was finally met by the diffusion-to-traps topological model, which yields a remarkably simple expression for the shape parameter {\beta}, given by d*/(d* + 2). At first sight this expression appears to be identical to d/(d + 2), where d is the actual spatial dimensionality, as originally derived. The original model, however, failed to explain much of the data base. Here the theme of earlier reviews, based on the observation that in the presence of short-range forces only d* = d = 3 is the actual spatial dimensionality, while for mixed short- and long-range forces, d* = fd = d/2, is applied to four new spectacular examples, where it turns out that SER is useful not only for purposes of quality control, but also for defining what is meant by a glass in novel contexts. (Please see full abstract in main text

    Vacuum Stability, Perturbativity, and Scalar Singlet Dark Matter

    Get PDF
    We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.Comment: 25 pages, 10 figures; v2 - fixed minor typos; v3 - added to text discussions of other references, changed coloring of figures for easier black and white viewin

    Inflation and dark matter in two Higgs doublet models

    Get PDF
    We consider the Higgs inflation in the extension of the Standard Model with two Higgs doublets coupled to gravity non-minimally. In the presence of an approximate global U(1) symmetry in the Higgs sector, both radial and angular modes of neutral Higgs bosons drive inflation where large non-Gaussianity is possible from appropriate initial conditions on the angular mode. We also discuss the case with single-field inflation for which the U(1) symmetry is broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity and stability conditions restrict the parameter space of the Higgs quartic couplings at low energy in both multi- and single-field cases. Focusing on the inert doublet models where Z_2 symmetry remains unbroken at low energy, we show that the extra neutral Higgs boson can be a dark matter candidate consistent with the inflationary constraints. The doublet dark matter is always heavy in multi-field inflation while it can be light due to the suppression of the co-annihilation in single-field inflation. The implication of the extra quartic couplings on the vacuum stability bound is also discussed in the light of the recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added, references added and typos corrected, to appear in Journal of High Energy Physic

    Comparison of low molecular weight glutenin subunits identified by SDS-PAGE, 2-DE, MALDI-TOF-MS and PCR in common wheat

    Get PDF
    Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF × SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries

    Vacuum stability, neutrinos, and dark matter

    Full text link
    Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the β\beta function of the Higgs quartic coupling λ\lambda and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of SU(2)LSU(2)_{L} group, will bring the additional positive contributions to the gauge coupling g2g_{2} renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.Comment: 18 pages, 15 figures; published versio

    Negatively Charged Excitons and Photoluminescence in Asymmetric Quantum Well

    Full text link
    We study photoluminescence (PL) of charged excitons (XX^-) in narrow asymmetric quantum wells in high magnetic fields B. The binding of all XX^- states strongly depends on the separation δ\delta of electron and hole layers. The most sensitive is the ``bright'' singlet, whose binding energy decreases quickly with increasing δ\delta even at relatively small B. As a result, the value of B at which the singlet--triplet crossing occurs in the XX^- spectrum also depends on δ\delta and decreases from 35 T in a symmetric 10 nm GaAs well to 16 T for δ=0.5\delta=0.5 nm. Since the critical values of δ\delta at which different XX^- states unbind are surprisingly small compared to the well width, the observation of strongly bound XX^- states in an experimental PL spectrum implies virtually no layer displacement in the sample. This casts doubt on the interpretation of PL spectra of heterojunctions in terms of XX^- recombination
    corecore