Abstract

We consider the Higgs inflation in the extension of the Standard Model with two Higgs doublets coupled to gravity non-minimally. In the presence of an approximate global U(1) symmetry in the Higgs sector, both radial and angular modes of neutral Higgs bosons drive inflation where large non-Gaussianity is possible from appropriate initial conditions on the angular mode. We also discuss the case with single-field inflation for which the U(1) symmetry is broken to a Z_2 subgroup. We show that inflationary constraints, perturbativity and stability conditions restrict the parameter space of the Higgs quartic couplings at low energy in both multi- and single-field cases. Focusing on the inert doublet models where Z_2 symmetry remains unbroken at low energy, we show that the extra neutral Higgs boson can be a dark matter candidate consistent with the inflationary constraints. The doublet dark matter is always heavy in multi-field inflation while it can be light due to the suppression of the co-annihilation in single-field inflation. The implication of the extra quartic couplings on the vacuum stability bound is also discussed in the light of the recent LHC limits on the Higgs mass.Comment: (v1) 28 pages, 8 figures; (v2) 29 pages, a new subsection 3.3 added, references added and typos corrected, to appear in Journal of High Energy Physic

    Similar works