412 research outputs found

    Regulation of pro-apoptotic phosphorylation of Kv2.1 K<sup>+</sup> channels

    Get PDF
    Caspase activity during apoptosis is inhibited by physiological concentrations of intracellular K+. To enable apoptosis in injured cortical and hippocampal neurons, cellular loss of this cation is facilitated by the insertion of Kv2.1 K+ channels into the plasma membrane via a Zn2+ /CaMKII/SNARE-dependent process. Pro-apoptotic membrane insertion of Kv2.1 requires the dual phosphorylation of the channel by Src and p38 at cytoplasmic N- and C- terminal residues Y124 and S800, respectively. In this study, we investigate if these phosphorylation sites are mutually co-regulated, and whether putative N- and C-terminal interactions, possibly enabled by Kv2.1 intracellular cysteine residues C73 and C710, influence the phosphorylation process itself. Studies were performed with recombinant wild type and mutant Kv2.1 expressed in Chinese hamster ovary (CHO) cells. Using immunoprecipitated Kv2.1 protein and phospho-specific antibodies, we found that an intact Y124 is required for p38 phosphorylation of S800, and, importantly, that Src phosphorylation of Y124 facilitates the action of the p38 at the S800 residue. Moreover, the actions of Src on Kv2.1 are substantially decreased in the non-phosphorylatable S800A channel mutant. We also observed that mutations of either C73 or C710 residues decreased the p38 phosphorylation at S800 without influencing the actions of Src on tyrosine phosphorylation of Kv2.1. Surprisingly, however, apoptotic K+ currents were suppressed only in cells expressing the Kv2.1(C73A) mutant but not in those transfected with Kv2.1(C710A), suggesting a possible structural alteration in the C-terminal mutant that facilitates membrane insertion. These results show that intracellular N-terminal domains critically regulate phosphorylation of the C-terminal of Kv2.1, and vice versa, suggesting possible new avenues for modifying the apoptotic insertion of these channels during neurodegenerative processes

    Exoplanet diversity in the era of space-based direct imaging missions

    Get PDF
    Community White Paper: submitted to the National Academy of Sciences Exoplanet Science StrategyThis white paper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux

    Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis

    Get PDF
    Background: Global and regional prevalence estimates for blindness and vision impairment are important for the development of public health policies. We aimed to provide global estimates, trends, and projections of global blindness and vision impairment. Methods: We did a systematic review and meta-analysis of population-based datasets relevant to global vision impairment and blindness that were published between 1980 and 2015. We fitted hierarchical models to estimate the prevalence (by age, country, and sex), in 2015, of mild visual impairment (presenting visual acuity worse than 6/12 to 6/18 inclusive), moderate to severe visual impairment (presenting visual acuity worse than 6/18 to 3/60 inclusive), blindness (presenting visual acuity worse than 3/60), and functional presbyopia (defined as presenting near vision worse than N6 or N8 at 40 cm when best-corrected distance visual acuity was better than 6/12). Findings: Globally, of the 7·33 billion people alive in 2015, an estimated 36·0 million (80% uncertainty interval [UI] 12·9–65·4) were blind (crude prevalence 0·48%; 80% UI 0·17–0·87; 56% female), 216·6 million (80% UI 98·5–359·1) people had moderate to severe visual impairment (2·95%, 80% UI 1·34–4·89; 55% female), and 188·5 million (80% UI 64·5–350·2) had mild visual impairment (2·57%, 80% UI 0·88–4·77; 54% female). Functional presbyopia affected an estimated 1094·7 million (80% UI 581·1–1686·5) people aged 35 years and older, with 666·7 million (80% UI 364·9–997·6) being aged 50 years or older. The estimated number of blind people increased by 17·6%, from 30·6 million (80% UI 9·9–57·3) in 1990 to 36·0 million (80% UI 12·9–65·4) in 2015. This change was attributable to three factors, namely an increase because of population growth (38·4%), population ageing after accounting for population growth (34·6%), and reduction in age-specific prevalence (–36·7%). The number of people with moderate and severe visual impairment also increased, from 159·9 million (80% UI 68·3–270·0) in 1990 to 216·6 million (80% UI 98·5–359·1) in 2015. Interpretation: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world’s population is causing a substantial increase in number of people affected. These observations, plus a very large contribution from uncorrected presbyopia, highlight the need to scale up vision impairment alleviation efforts at all levels

    11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

    Get PDF
    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm(-2) benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.open

    Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis

    Get PDF
    Background: Contemporary data on causes of vision impairment and blindness form an important basis for recommendations in public health policies. Refreshment of the Global Vision Database with recently published data sources permitted modeling of cause of vision loss data from 1990 to 2015, further disaggregation by cause, and forecasts to 2020. Methods: Published and unpublished population-based data on the causes of vision impairment and blindness from 1980 to 2015 were systematically analysed. A series of regression models were fit to estimate the proportion of moderate and severe vision impairment (MSVI; defined as presenting visual acuity <6/18 but ≥3/60 in the better eye) and blindness (presenting visual acuity <3/60 in the better eye) by cause by age, region, and year. Findings: Among the projected global population with MSVI (216.6 million; 80% uncertainty intervals [UI] 98.5-359.1), in 2015 the leading causes thereof are uncorrected refractive error (116.3 million; UI 49.4-202.1), cataract (52.6 million; UI 18.2-109.6), age-related macular degeneration (AMD; 8.4 million; UI 0.9-29.5), glaucoma (4.0 million; UI 0.6-13.3) and diabetic retinopathy (2.6 million; UI 0.2-9.9). In 2015, the leading global causes of blindness were cataract (12.6 million; UI 3.4-28.7) followed by uncorrected refractive error (7.4 million; UI 2.4-14.8) and glaucoma (2.9 million; UI 0.4-9.9), while by 2020, these numbers affected are anticipated to rise to 13.4 million, 8.0 million and 3.2 million, respectively. Cataract and uncorrected refractive error combined contributed to 55% of blindness and 77% of MSVI in adults aged 50 years and older in 2015. World regions varied markedly in the causes of blindness, with a relatively low prevalence of cataract and a relatively high prevalence of AMD as causes for vision loss in the High-income subregions. Blindness due to cataract and diabetic retinopathy was more common among women, while blindness due to glaucoma and corneal opacity was more common among men, with no gender difference related to AMD. Conclusions: The numbers of people affected by the common causes of vision loss have increased substantially as the population increases and ages. Preventable vision loss due to cataract and refractive error (reversible with surgery and spectacle correction respectively), continue to cause the majority of blindness and MSVI in adults aged 50+ years. A massive scale up of eye care provision to cope with the increasing numbers is needed if one is to address avoidable vision loss

    Exoplanet biosignatures: A review of remotely detectable signs of life

    Get PDF
    In the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth’s biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere. Considering the insights gained from modern and ancient Earth, and the broader array of hypothetical exoplanet possibilities, we have compiled a comprehensive overview of our current understanding of potential exoplanet biosignatures, including gaseous, surface, and temporal biosignatures. We additionally survey biogenic spectral features that are well known in the specialist literature but have not yet been robustly vetted in the context of exoplanet biosignatures. We briefly review advances in assessing biosignature plausibility, including novel methods for determining chemical disequilibrium from remotely obtainable data and assessment tools for determining the minimum biomass required to maintain short-lived biogenic gases as atmospheric signatures. We focus particularly on advances made since the seminal review by Des Marais et al. The purpose of this work is not to propose new biosignature strategies, a goal left to companion articles in this series, but to review the current literature, draw meaningful connections between seemingly disparate areas, and clear the way for a path forward

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
    corecore