671 research outputs found

    Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β1-induced contraction of human lung fibroblasts

    Full text link
    Many lung diseases are characterized by fibrosis, leading to impaired tissue patency and reduced lung function. Development of fibrotic tissue depends on two-way interaction between the cells and the extra-cellular matrix (ECM). Concentration-dependent increased stiffening of the ECM is sensed by the cells, which in turn increases intracellular contraction and pulling on the matrix causing matrix reorganization and further stiffening. It is generally accepted that the inflammatory cytokine growth factor β1 (TGF-β1) is a major driver of lung fibrosis through the stimulation of ECM production. However, TGF-β1 also regulates the expression of members of the tropomyosin (Tm) family of actin associating proteins that mediate ECM reorganization through intracellular-generated forces. Thus, TGF-β1 may mediate the bi-directional signaling between cells and the ECM that promotes tissue fibrosis. Using combinations of cytokine stimulation, mRNA, protein profiling and cellular contractility assays with human lung fibroblasts, we show that concomitant induction of key Tm isoforms and ECM by TGF-β1, significantly accelerates fibrotic phenotypes. Knocking down Tpm2.1 reduces fibroblast-mediated collagen gel contraction. Collectively, the data suggest combined ECM secretion and actin cytoskeleton contractility primes the tissue for enhanced fibrosis. Our study suggests that Tms are at the nexus of inflammation and tissue stiffening. Small molecules targeting specific Tm isoforms have recently been designed; thus targeting Tpm2.1 may represent a novel therapeutic target in lung fibrosis

    MUSCLE : automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis:Automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis

    Get PDF
    Summary: Developing liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of (bio)chemicals is both time consuming and challenging, largely because of the large number of LC and MS instrument parameters that need to be optimized. This bottleneck significantly impedes our ability to establish new (bio)analytical methods in fields such as pharmacology, metabolomics and pesticide research. We report the development of a multi-platform, user-friendly software tool MUSCLE (multi-platform unbiased optimization of spectrometry via closed-loop experimentation) for the robust and fully automated multi-objective optimization of targeted LC-MS/MS analysis. MUSCLE shortened the analysis times and increased the analytical sensitivities of targeted metabolite analysis, which was demonstrated on two different manufacturer’s LC-MS/MS instruments. Availability and implementation: Available at http://www.muscleproject.org. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    Automated development of an LC-MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software

    Get PDF
    This study describes the application of Multi-platform Unbiased optimization of Spectrometry via Closed-Loop Experimentation (MUSCLE) software to automate the development of an LC-MS/MS method to measure multiple metabolites of vitamin D.</p

    Validation of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers

    Get PDF
    Oxford WebQ is an online dietary questionnaire covering 24 hours, appropriate for repeated administration in large-scale prospective studies including UK Biobank and the Million Women Study. We compared performance of the Oxford WebQ and a traditional interviewer-administered multi-pass 24-hour recall against biomarkers for protein, potassium and total sugar intake, and total energy expenditure estimated by accelerometry. 160 participants were recruited between 2014 and 2016 in London, UK, and measured at 3 non-consecutive time-points. The measurement error model simultaneously compared all 3 methods. Attenuation factors for protein, potassium, sugars and total energy intake estimated by the mean of 2 Oxford WebQs were 0.37, 0.42, 0.45, and 0.31 respectively, with performance improving incrementally for the mean of more measures. Correlation between the mean of 2 Oxford WebQs and estimated true intakes, reflecting attenuation when intake is categorised or ranked, was 0.47, 0.39, 0.40, and 0.38 respectively, also improving with repeated administration. These were similar to the more administratively burdensome interviewer-based recall. Using objective biomarkers as the standard, Oxford WebQ performs well across key nutrients in comparison with more administratively burdensome interviewer-based 24-hour recalls. Attenuation improves when the average is taken over repeated administration, reducing measurement error bias in assessment of diet-disease associations

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding

    Get PDF
    Wheat is an important staple that acts as a primary source of dietary energy, protein, and essential micronutrients such as iron (Fe) and zinc (Zn) for the world’s population. Approximately two billion people suffer from micronutrient deficiency, thus breeders have crossed high Zn progenitors such as synthetic hexaploid wheat, T. dicoccum, T. spelta, and landraces to generate wheat varieties with competitive yield and enhanced grain Zn that are being adopted by farmers in South Asia. Here we report a genome-wide association study (GWAS) using the wheat Illumina iSelect 90 K Infinitum SNP array to characterize grain Zn concentrations in 330 bread wheat lines. Grain Zn phenotype of this HarvestPlus Association Mapping (HPAM) panel was evaluated across a range of environments in India and Mexico. GWAS analysis revealed 39 marker-trait associations for grain Zn. Two larger effect QTL regions were found on chromosomes 2 and 7. Candidate genes (among them zinc finger motif of transcription-factors and metal-ion binding genes) were associated with the QTL. The linked markers and associated candidate genes identified in this study are being validated in new biparental mapping populations for marker-assisted breeding

    Fruit and vegetables intake among elderly Iranians: a theory-based interventional study using the five-a-day program

    Get PDF
    Abstract Background The benefit of FV intake in old age is well documented. However, there is evidence that old people do not consume enough FV. The purpose of this study was to evaluate the effectiveness of a tailored nutrition intervention that aimed to increase the FV intake among elderly Iranians aged 60 and over. Methods This quasi-experimental study was performed among a community-based sample of elderly in Tehran, Iran in year 2008 to 2009. Data were collected at baseline and 4 weeks follow-up. At baseline face-to-face interviews were conducted using a structured questionnaire including items on demographic information, stages of change, self-efficacy, decisional balance, daily servings of FV intake. Follow-up data were collected after implementing the intervention. Results In all 400 elderly were entered into the study (200 individuals in intervention group and 200 in control group). The mean age of participants was 64.06 ± 4.48 years and overall two-third of participants were female. At baseline total FV intake was not differed between two groups but it was significantly increased in the intervention group at posttest assessment (mean serving/day in intervention group 3.08 ± 1.35 vs. 1.79 ± 1.08 in control group; P = 0.001). Further analysis also indicated that elderly in intervention group had higher FV intake, perceived benefits and self-efficacy, and lower perceived barriers. Compared with control group, greater proportions of elderly in intervention group moved from pre-contemplation to contemplation/preparation and action/maintenance stages (P Conclusion This study suggests that the Transtheoretical Model is a useful model that can be applied to dietary behavior change, more specifically FV consumption among elderly population in Iran and perhaps elsewhere with similar conditions.</p

    Rapid interactome profiling by massive sequencing

    Get PDF
    We have developed a high-throughput protein expression and interaction analysis platform that combines cDNA phage display library selection and massive gene sequencing using the 454 platform. A phage display library of open reading frame (ORF) fragments was created from mRNA derived from different tissues. This was used to study the interaction network of the enzyme transglutaminase 2 (TG2), a multifunctional enzyme involved in the regulation of cell growth, differentiation and apoptosis, associated with many different pathologies. After two rounds of panning with TG2 we assayed the frequency of ORFs within the selected phage population using 454 sequencing. Ranking and analysis of more than 120 000 sequences allowed us to identify several potential interactors, which were subsequently confirmed in functional assays. Within the identified clones, three had been previously described as interacting proteins (fibronectin, SMOC1 and GSTO2), while all the others were new. When compared with standard systems, such as microtiter enzyme-linked immunosorbant assay, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction

    NF-κB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase

    Get PDF
    Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-κB (NF-κB). Both iNOS activation and radioresponse were impaired by the NF-κB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-κB may impair the radioresponse of tumour cells through downregulation of iNOS. © 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore