416 research outputs found

    A comparison of statistical emulation methodologies for multi-wave calibration of environmental models

    Get PDF
    Expensive computer codes, particularly those used simulating environmental or geological processes such as climate models, require calibration (sometimes called tuning). When calibrating expensive simulators using uncertainty quantification methods, it is usually necessary to use a statistical model called an emulator in place of the computer code when running the calibration algorithm. Though emulators based on Gaussian processes are typically many orders of magnitude faster to evaluate than the simulator they mimic, many applications have sought to speed up the computations by using regression-only emulators within the calculations instead, arguing that the extra sophistication brought using the Gaussian process is not worth the extra computational power. This was the case for the analysis that produced the UK climate projections in 2009. In this paper we compare the effectiveness of both emulation approaches upon a multi-wave calibration framework that is becoming popular in the climate modelling community called \history matching". We find that Gaussian processes offer significant benefits to the reduction of parametric uncertainty over regression-only approaches. We find that in a multi-wave experiment, a combination of regression-only emulators initially, followed by Gaussian process emulators for refocussing experiments can be nearly as effective as using Gaussian processes throughout for a fraction of the computational cost. We also discover a number of design and emulator-dependent features of the multi-wave history matching approach that can cause apparent, yet premature, convergence of our estimates of parametric uncertainty. We compare these approaches to calibration in idealised examples and apply it to a well-known geological reservoir mode

    Quantitative assessment of sewer overflow performance with climate change in northwest England

    Get PDF
    Changes in rainfall patterns associated with climate change can affect the operation of a combined sewer system, with the potential increase in rainfall amount. This could lead to excessive spill frequencies and could also introduce hazardous substances into the receiving waters, which, in turn, would have an impact on the quality of shellfish and bathing waters. This paper quantifies the spilling volume, duration and frequency of 19 combined sewer overflows (CSOs) to receiving waters under two climate change scenarios, the high (A1FI), and the low emissions (B1) scenarios, simulated by three global climate models (GCMs), for a study catchment in northwest England. The future rainfall is downscaled, using climatic variables from HadCM3, CSIRO and CGCM2 GCMs, with the use of a hybrid generalized linear–artificial neural network model. The results from the model simulation for the future in 2080 showed an annual increase of 37% in total spill volume, 32% in total spill duration, and 12% in spill frequency for the shellfish water limiting requirements. These results were obtained, under the high emissions scenario, as projected by the HadCM3 as maximum. Nevertheless, the catchment drainage system is projected to cope with the future conditions in 2080 by all three GCMs. The results also indicate that under scenario B1, a significant drop was projected by CSIRO, which in the worst case could reach up to 50% in spill volume, 39% in spill duration and 25% in spill frequency. The results further show that, during the bathing season, a substantial drop is expected in the CSO spill drivers, as predicted by all GCMs under both scenarios

    Direct characterization of a nonlinear photonic circuit's wave function with laser light

    Full text link
    © The Author(s) 2018. Integrated photonics is a leading platform for quantum technologies including nonclassical state generation 1, 2, 3, 4, demonstration of quantum computational complexity 5 and secure quantum communications 6. As photonic circuits grow in complexity, full quantum tomography becomes impractical, and therefore an efficient method for their characterization 7, 8 is essential. Here we propose and demonstrate a fast, reliable method for reconstructing the two-photon state produced by an arbitrary quadratically nonlinear optical circuit. By establishing a rigorous correspondence between the generated quantum state and classical sum-frequency generation measurements from laser light, we overcome the limitations of previous approaches for lossy multi-mode devices 9, 10. We applied this protocol to a multi-channel nonlinear waveguide network and measured a 99.28±0.31% fidelity between classical and quantum characterization. This technique enables fast and precise evaluation of nonlinear quantum photonic networks, a crucial step towards complex, large-scale, device production

    Relationship between erythema effective UV radiant exposure, total ozone, cloud cover and aerosols in southern England, UK

    Get PDF
    Evidence of an underlying trend in the dependence of erythema effective ultraviolet (UV) radiant exposure (Her) on changes in the total ozone, cloud cover and aerosol optical depth (AOD) has been studied using solar ultraviolet radiation measurements collected over a 25-year period (1991–2015) at Chilton in the south of England in the UK. The monthly mean datasets of these measures corrected for underlying seasonal variation were analysed. When a single linear trend was fitted over the whole study period between 1991 and 2015, the analyses revealed that the long-term variability of Her can be best characterised in two sub-periods (1991–2004 and 2004–2015), where the estimated linear trend was upward in the first period (1991–2004) but downward in the second period (2004–2015). Both cloud cover (CC) and total ozone (TO) were found to have a highly statistically significant influence on Her, but the influence of the AOD measure was very small. The radiation amplification factor (RAF) for the erythema action spectrum due to TO was −1.03 at constant levels of CC over the whole study period; that is, for a 1.0&thinsp;% increase in TO, Her decreases by 1.03&thinsp;%. Over the first period (1991–2004), the RAF related to CC was slightly higher at 0.97 compared to that for TO at 0.79. The proportion of the change in Her explained by the change in CC (47&thinsp;%) was much greater than the proportion explained by changes in TO (8&thinsp;%). For the second period (2004–2015), the pattern reversed, with the observed RAF related to TO being −1.25, almost double that of CC (−0.65). Furthermore, in this period the proportion of variation in Her explained by TO variation was 33&thinsp;%, double that of CC at 16&thinsp;%, while AOD changes had a negligible effect (1&thinsp;%). When the data were examined separately for each season, for the first period (1991–2004) the greatest effect of TO and CC on Her (i.e. the largest RAF value) was found during spring. Spring was also the season during which TO and CC variation explained the greatest proportion of variability in Her (82&thinsp;%). In the later period (2004–2015), the RAF and greatest influence of TO and CC were observed in winter (67&thinsp;%) and the AOD effect explained a further 5&thinsp;% variability in Her. This study provides evidence that both the increasing trend in Her for 1991–2004 and the decreasing trend in Her for 2004–2015 occur in response to variation in TO, which exhibits a small increasing tendency over these periods. CC plays a more important role in the increasing trend in Her for 1991–2004 than TO, whereas for 2004–2015, the decreasing trend in Her is less associated with changes in CC and AOD.</p

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 ÎŒg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 ÎŒg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-ÎșB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Summer weather becomes more persistent in a 2 °C world

    Get PDF
    Heat and rainfall extremes have intensified over the past few decades and this trend is projected to continue with future global warming1–3. A long persistence of extreme events often leads to societal impacts with warm-and-dry conditions severely affecting agriculture and consecutive days of heavy rainfall leading to flooding. Here we report systematic increases in the persistence of boreal summer weather in a multi-model analysis of a world 2 °C above pre-industrial compared to present-day climate. Averaged over the Northern Hemisphere mid-latitude land area, the probability of warm periods lasting longer than two weeks is projected to increase by 4% (2–6% full uncertainty range) after removing seasonal-mean warming. Compound dry–warm persistence increases at a similar magnitude on average but regionally up to 20% (11–42%) in eastern North America. The probability of at least seven consecutive days of strong precipitation increases by 26% (15–37%) for the mid-latitudes. We present evidence that weakening storm track activity contributes to the projected increase in warm and dry persistence. These changes in persistence are largely avoided when warming is limited to 1.5 °C. In conjunction with the projected intensification of heat and rainfall extremes, an increase in persistence can substantially worsen the effects of future weather extremes

    Human influence on climate in the 2014 southern England winter floods and their impacts

    Get PDF
    A succession of storms reaching Southern England in the winter of 2013/2014 caused severe floods and £451 million insured losses. In a large ensemble of climate model simulations, we find that, as well as increasing the amount of moisture the atmosphere can hold, anthropogenic warming caused a small but significant increase in the number of January days with westerly flow, both of which increased extreme precipitation. Hydrological modelling indicates this increased extreme 30-day-average Thames river flows, and slightly increased daily peak flows, consistent with the understanding of the catchment’s sensitivity to longer-duration precipitation and changes in the role of snowmelt. Consequently, flood risk mapping shows a small increase in properties in the Thames catchment potentially at risk of riverine flooding, with a substantial range of uncertainty, demonstrating the importance of explicit modelling of impacts and relatively subtle changes in weather-related risks when quantifying present-day effects of human influence on climate
    • 

    corecore