113 research outputs found
Is Cycle 24 the Beginning of a Dalton-Like Minimum?
The unexpected development of cycle 24 emphasizes the need for a better way
to model future solar activity. In this article, we analyze the accumulation of
spotless days during individual cycles from 1798-2010. The analysis shows that
spotless days do not disappear abruptly in the transition towards an active
sun. A comparison with past cycles indicates that the ongoing accumulation of
spotless days is comparable to that of cycle 5 near the Dalton minimum and to
that of cycles 12, 14 and 15. It also suggests that the ongoing cycle has as
much as 20 \pm 8 spotless days left, from July 2010, before it reaches the next
solar maximum. The last spotless day is predicted to be in December 2012, with
an uncertainty of 11 months. This trend may serve as input to the solar dynamo
theories.Comment: 10 pages, 5 figures. The final publication is available at
http://www.springerlink.co
Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome
Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0. 5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation (ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by gestational ENM exposure.
Results: The results of the sequencing experiments provide initial evidence that significant epigenetic and transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal physiology were linked with other tissues, including liver and kidneys.
Conclusions: These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome
Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome
Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0. 5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation (ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by gestational ENM exposure.
Results: The results of the sequencing experiments provide initial evidence that significant epigenetic and transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal physiology were linked with other tissues, including liver and kidneys.
Conclusions: These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome
Histone hyperacetylation disrupts core gene regulatory architecture in rhabdomyosarcoma
Core regulatory transcription factors (CR TFs) orchestrate the placement of super-enhancers (SEs) to activate transcription of cell-identity specifying gene networks, and are critical in promoting cancer. Here, we define the core regulatory circuitry of rhabdomyosarcoma and identify critical CR TF dependencies. These CR TFs build SEs that have the highest levels of histone acetylation, yet paradoxically the same SEs also harbor the greatest amounts of histone deacetylases. We find that hyperacetylation selectively halts CR TF transcription. To investigate the architectural determinants of this phenotype, we used absolute quantification of architecture (AQuA) HiChIP, which revealed erosion of native SE contacts, and aberrant spreading of contacts that involved histone acetylation. Hyperacetylation removes RNA polymerase II (RNA Pol II) from core regulatory genetic elements, and eliminates RNA Pol II but not BRD4 phase condensates. This study identifies an SE-specific requirement for balancing histone modification states to maintain SE architecture and CR TF transcription
Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations
Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed
Spittlebug Cephisus siccifolius damaging eucalypt plants in the State of Bahia, Brazil
Predation on young treefrog (Osteocephalus taurinus) by arthropods (Insecta, Mantodea and Arachnida, Araneae) in Central Brazil
Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo
Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame mass M > 70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 < e ≤ 0.3 at 16.9 Gpc−3 yr−1 at the 90% confidence level
Constraints on the Cosmic Expansion History from GWTC-3
This material is based upon work supported by NSFʼs LIGO
Laboratory, which is a major facility fully funded by the National
Science Foundation. The authors also gratefully acknowledge the
support of the Science and Technology Facilities Council (STFC)
of the United Kingdom, the Max-Planck-Society (MPS), and the
State of Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of the
GEO600 detector. Additional support for Advanced LIGO was
provided by the Australian Research Council. The authors
gratefully acknowledge the Italian Istituto Nazionale di Fisica
Nucleare (INFN), the French Centre National de la Recherche
Scientifique (CNRS), and the Netherlands Organization for
Scientific Research (NWO), for the construction and operation
of the Virgo detector and the creation and support of the EGO
consortium. The authors also gratefully acknowledge research
support from these agencies as well as by the Council of Scientific
and Industrial Research of India, the Department of Science and
Technology, India, the Science & Engineering Research Board
(SERB), India, the Ministry of Human Resource Development,
India, the Spanish Agencia Estatal de Investigación (AEI), the
Spanish Ministerio de Ciencia e Innovación and Ministerio de
Universidades, the Conselleria de Fons Europeus, Universitat i
Cultura and the Direcció General de Política Universitaria i
Recerca del Govern de les Illes Balears, the Conselleria
d’Innovació Universitats, Ciència i Societat Digital de la
Generalitat Valenciana and the CERCA Programme Generalitat
de Catalunya, Spain, the National Science Centre of Poland and
the European Union–European Regional Development Fund,
Foundation for Polish Science (FNP), the Swiss National Science
Foundation (SNSF), the Russian Foundation for Basic Research,
the Russian Science Foundation, the European Commission, the
European Social Funds (ESF), the European Regional Develop-
ment Funds (ERDF), the Royal Society, the Scottish Funding
Council, the Scottish Universities Physics Alliance, the Hungarian
Scientific Research Fund (OTKA), the French Lyon Institute of
Origins (LIO), the Belgian Fonds de la Recherche Scientifique
(FRS-FNRS), Actions de Recherche Concertées (ARC) and
Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO), Bel-
gium, the Paris Île-de-France Region, the National Research,
Development and Innovation Office Hungary (NKFIH), the
National Research Foundation of Korea, the Natural Science and
Engineering Research Council Canada, Canadian Foundation for
Innovation (CFI), the Brazilian Ministry of Science, Technology,
and Innovations, the International Center for Theoretical Physics
South American Institute for Fundamental Research (ICTP-
SAIFR), the Research Grants Council of Hong Kong, the National
Natural Science Foundation of China (NSFC), the Leverhulme
Trust, the Research Corporation, the Ministry of Science and
Technology (MOST), Taiwan, the United States Department of
Energy, and the Kavli Foundation. The authors gratefully
acknowledge the support of the NSF, STFC, INFN, and CNRS
for provision of computational resources.
This work was supported by MEXT, JSPS Leading-edge
Research Infrastructure Program, JSPS Grant-in-Aid for
Specially Promoted Research 26000005, JSPS Grant-in-Aid
for Scientific Research on Innovative Areas 2905:
JP17H06358, JP17H06361, and JP17H06364, JSPS Core-to-
Core Program A. Advanced Research Networks, JSPS Grant-
in-Aid for Scientific Research (S) 17H06133 and 20H05639,
JSPS Grant-in-Aid for Transformative Research Areas (A)
20A203: JP20H05854, the joint research program of the
Institute for Cosmic Ray Research, University of Tokyo,
National Research Foundation (NRF) and Computing Infra-
structure Project of KISTI-GSDC in Korea, Academia Sinica
(AS), AS Grid Center (ASGC), and the Ministry of Science and
Technology (MoST) in Taiwan under grants including AS-
CDA-105-M06, Advanced Technology Center (ATC) of
NAOJ, Mechanical Engineering Center of KEK.
We would like to thank all of the essential workers who put
their health at risk during the COVID-19 pandemic, without
whom we would not have been able to complete this work.Peer reviewe
Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run
Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
- …
