419 research outputs found

    The Perugia (Italy) earthquake of April 29,1984: a seismic survey

    Get PDF
    International audienceA field study after the Perugia earthquake of 29 April 1984 provided more than 300 well-recorded events concentrated within two parallel clusters separated by 2 km and trending along the Apenninic direction. The length of the aftershock area is 14 km, focal depths being shallower than 8 km. Relocation of the main event places the epicenter at the southern end of the aftershock zone, suggesting a rupture propagation from SE to NW. Most focal mechanisms are consistent with normal faulting. The spatial distribution of seismicity suggests that the Gubbio normal fault was activated during the main shock. This earthquake, together with the Norcia 1979 and the Abruzzi 1984 shocks, is typical of the extension in the high Apennines generated by the flexure of the mountain chain in response to regional compression. The Parma 1983 event, a thrust, belongs to the compres- sion zone at the eastern flank of the chain. These results are consistent with the EW continental collision along the Apennines

    Gradient microfluidics enables rapid bacterial growth inhibition testing

    Get PDF
    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    A genetic algorithm for the one-dimensional cutting stock problem with setups

    Get PDF
    This paper investigates the one-dimensional cutting stock problem considering two conflicting objective functions: minimization of both the number of objects and the number of different cutting patterns used. A new heuristic method based on the concepts of genetic algorithms is proposed to solve the problem. This heuristic is empirically analyzed by solving randomly generated instances and also practical instances from a chemical-fiber company. The computational results show that the method is efficient and obtains positive results when compared to other methods from the literature. © 2014 Brazilian Operations Research Society

    Attosecond imaging of molecular electronic wavepackets

    Get PDF
    International audienceA strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N 2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions

    The Perplexing Problem of Persistently PCR-Positive Personnel

    Get PDF
    Early in the coronavirus disease 2019 (COVID-19) pandemic, the Centers for Disease Control and Prevention (CDC) published return-to-work criteria for healthcare personnel who had recovered from severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection. These criteria were most recently updated on April 3, 2020.1 The CDC has endorsed 2 different approaches to allow staff to return to work: a symptom or time-based strategy and a test-based strategy. Many institutions initially adopted the test-based strategy, in part because CDC initially recommended it as the preferred option (but no longer does so) and, in part, because it seemed the more definitive or conservative of the 2 CDC options

    Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study

    Get PDF
    ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3 × 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6 × 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype
    • …
    corecore