1,010 research outputs found

    Revisiting random deposition with surface relaxation: approaches from growth rules to Edwards-Wilkinson equation

    Get PDF
    We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.Comment: 12 pages, 4 figure

    System Size Stochastic Resonance: General Nonequilibrium Potential Framework

    Get PDF
    We study the phenomenon of system size stochastic resonance within the nonequilibrium potential's framework. We analyze three different cases of spatially extended systems, exploiting the knowledge of their nonequilibrium potential, showing that through the analysis of that potential we can obtain a clear physical interpretation of this phenomenon in wide classes of extended systems. Depending on the characteristics of the system, the phenomenon results to be associated to a breaking of the symmetry of the nonequilibrium potential or to a deepening of the potential minima yielding an effective scaling of the noise intensity with the system size.Comment: LaTex, 24 pages and 9 figures, submitted to Phys. Rev.

    Nucleation, solvation and boiling of helium excimer clusters

    Full text link
    Helium excimers generated by a corona discharge were investigated in the gas and normal liquid phases of helium as a function of temperature and pressure between 3.8 and 5.0 K and 0.2 and 5.6 bar. Intense fluorescence in the visible region showed the rotationally resolved d3Σu+b3Πgd^3\Sigma_u^+ \rightarrow b^3\Pi_g transition of He2_2^*. With increasing pressure, the rotational lines merged into single features. The observed pressure dependence of linewidths, shapes and lineshifts established phases of coexistence and separation of excimer-helium mixtures, providing detailed insight into nucleation, solvation and boiling of He2_2^*-Hen_n clusters.Comment: 5 pages, 5 figure

    Stochastic Resonance in an Extended FitzHugh-Nagumo System: the Role of Selective Coupling

    Get PDF
    Here we present a study of stochastic resonance in an extended FitzHugh-Nagumo system with a field dependent activator diffusion. We show that the system response (here measured through the output signal-to-noise ratio) is enhanced due to the particular form of the non-homogeneous coupling. Such a result supports previous ones obtained in a simpler scalar reaction-diffusion system and shows that such an enhancement, induced by the field dependent diffusion -or selective coupling-, is a robust phenomenon.Comment: 14 pages, 19 figure

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    GABAergic presubicular projections to the medial entorhinal cortex of the rat

    Get PDF
    We characterized presubicular neurons giving rise to bilateral projections to the medial entorhinal cortex (MEA) of the rat. Retrograde labeling of presubiculo–entorhinal projections with horseradish peroxidase and subsequent GABA immunocytochemistry revealed that 20–30 % of the ipsilaterally projecting neurons are GABAergic. No GABAergic projections to the contralateral MEA were observed. GABAergic projection neurons were observed only in the dorsal part of the presubiculum, which, when taking into account the topography of presubicular projections to MEA, indicates that only the dorsal part of MEA receives GABAergic input. The GABAergic projection neurons constitute �30-40 % of all GABAergic neurons present in the superficial layers of the dorsal presubiculum. Using doublelabel fluorescent retrograde tracing, we found that the ipsilateral and contralateral presubiculo–entorhinal projections originat

    Probing the structure and dynamics of molecular clusters using rotational wavepackets

    Full text link
    The chemical and physical properties of molecular clusters can heavily depend on their size, which makes them very attractive for the design of new materials with tailored properties. Deriving the structure and dynamics of clusters is therefore of major interest in science. Weakly bound clusters can be studied using conventional spectroscopic techniques, but the number of lines observed is often too small for a comprehensive structural analysis. Impulsive alignment generates rotational wavepackets, which provides simultaneous information on structure and dynamics, as has been demonstrated successfully for isolated molecules. Here, we apply this technique for the firsttime to clusters comprising of a molecule and a single helium atom. By forcing the population of high rotational levels in intense laser fields we demonstrate the generation of rich rotational line spectra for this system, establishing the highly delocalised structure and the coherence of rotational wavepacket propagation. Our findings enable studies of clusters of different sizes and complexity as well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure

    Stochastic Resonance in Spatially Extended Systems: The Role of Far from Equilibrium Potentials

    Full text link
    Previous works have shown numerically that the response of a ``stochastic resonator'' is enhanced as a consequence of spatial coupling. Also, similar results have been obtained in a reaction-diffusion model by studying the phenomenon of stochastic resonance (SR) in spatially extended systems using "nonequilibrium potential" (NEP) techniques. The knowledge of the NEP for such systems allows us to determine the probability for the decay of the metastable extended states, and approximate expressions for the correlation function and the signal-to-noise ratio (SNR). Here, exploiting known forms of the NEP, we have investigated the role of NEP's symmetry on SR, the enhancement of the SNR due to a "selectivity" of the coupling or diffusion parameter, and discussed competition between local and nonlocal (excitatory) coupling.Comment: RevTex, 22 pgs, 6 figures. Invited Talk STATPHYS21, Proceedings to be published in Physica

    Resonant phenomena in extended chaotic systems subject to external noise: the Lorenz'96 model case

    Get PDF
    We investigate the effects of a time-correlated noise on an extended chaotic system. The chosen model is the Lorenz'96, a kind of "toy" model used for climate studies. Through the analysis of the system's time evolution and its time and space correlations, we have obtained numerical evidence for two stochastic resonance-like behavior. Such behavior is seen when both, the usual and a generalized signal-to-noise ratio function are depicted as a function of the external noise intensity or the system size. The underlying mechanism seems to be associated to a "noise-induced chaos reduction". The possible relevance of these and other findings for an "optimal" climate prediction are discussed.Comment: Submitted to Europhysics Letters (LaTex, 12 pgs, 5 figures

    Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics

    Get PDF
    We study an extended system that without noise shows a monostable dynamics, but when submitted to an adequate multiplicative noise, an effective bistable dynamics arise. The stochastic resonance between the attractors of the \textit{noise-sustained dynamics} is investigated theoretically in terms of a two-state approximation. The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential value.Comment: RevTex, 13 pages, 6 figures, accepted in Physical Review
    corecore