672 research outputs found

    Absence of stable collinear configurations in Ni(001)ultrathin films: canted domain structure as ground state

    Full text link
    Brillouin light scattering (BLS) measurements were performed for (17-120) Angstrom thick Cu/Ni/Cu/Si(001) films. A monotonic dependence of the frequency of the uniform mode on an in-plane magnetic field H was observed both on increasing and on decreasing H in the range (2-14) kOe, suggesting the absence of a metastable collinear perpendicular ground state. Further investigation by magneto-optical vector magnetometry (MOKE-VM) in an unconventional canted-field geometry provided evidence for a domain structure where the magnetization is canted with respect to the perpendicular to the film. Spin wave calculations confirm the absence of stable collinear configurations.Comment: 6 pages, 3 figures (text, appendix and 1 figure added

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible.

    Get PDF
    To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1-/-) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1-/- mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1-/- mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1-/- mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome

    Epstein–Barr virus renders the infected natural killer cell line, NKL resistant to doxorubicin-induced apoptosis

    Get PDF
    We established two Epstein–Barr virus (EBV)-infected NKL sublines, which acquired stress resistant phenotype against DNA damage and starvation compared with EBV-negative NKL. EBV-rendered doxorubicin resistance at least partially through NF-κB activation and the resultant sustenance of antiapoptotic proteins including Bcl-XL and FLIPL/S

    Spike-Timing Theory of Working Memory

    Get PDF
    Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds

    Live cell fluorescence microscopy to study microbial pathogenesis

    Full text link
    Advances in microscopy and fluorescent probes provide new insight into the nanometer-scale biochemistry governing the interactions between eukaryotic cells and pathogens. When combined with mathematical modelling, these new technologies hold the promise of qualitative, quantitative and predictive descriptions of these pathways. Using the light microscope to study the spatial and temporal relationships between pathogens, host cells and their respective biochemical machinery requires an appreciation for how fluorescent probes and imaging devices function. This review summarizes how live cell fluorescence microscopy with common instruments can provide quantitative insight into the cellular and molecular functions of hosts and pathogens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72689/1/j.1462-5822.2009.01283.x.pd

    ARF1 Mediates Paxillin Recruitment to Focal Adhesions and Potentiates Rho-stimulated Stress Fiber Formation in Intact and Permeabilized Swiss 3T3 Fibroblasts

    Get PDF
    Focal adhesion assembly and actin stress fiber formation were studied in serum-starved Swiss 3T3 fibroblasts permeabilized with streptolysin-O. Permeabilization in the presence of GTPγS stimulated rho-dependent formation of stress fibers, and the redistribution of vinculin and paxillin from a perinuclear location to focal adhesions. Addition of GTPγS at 8 min after permeabilization still induced paxillin recruitment to focal adhesion–like structures at the ends of stress fibers, but vinculin remained in the perinuclear region, indicating that the distributions of these two proteins are regulated by different mechanisms. Paxillin recruitment was largely rho-independent, but could be evoked using constitutively active Q71L ADP-ribosylation factor (ARF1), and blocked by NH2-terminally truncated Δ17ARF1. Moreover, leakage of endogenous ARF from cells was coincident with loss of GTPγS- induced redistribution of paxillin to focal adhesions, and the response was recovered by addition of ARF1. The ability of ARF1 to regulate paxillin recruitment to focal adhesions was confirmed by microinjection of Q71LARF1 and Δ17ARF1 into intact cells. Interestingly, these experiments showed that V14RhoA- induced assembly of actin stress fibers was potentiated by Q71LARF1. We conclude that rho and ARF1 activate complimentary pathways that together lead to the formation of paxillin-rich focal adhesions at the ends of prominent actin stress fibers

    The Role of Practitioner Resilience and Mindfulness in Effective Practice: A Practice-Based Feasibility Study.

    Get PDF
    A growing body of literature attests to the existence of therapist effects with little explanation of this phenomenon. This study therefore investigated the role of resilience and mindfulness as factors related to practitioner wellbeing and associated effective practice. Data comprised practitioners (n = 37) and their patient outcome data (n = 4980) conducted within a stepped care model of service delivery. Analyses employed benchmarking and multilevel modeling to identify more and less effective practitioners via yoking of therapist factors and nested patient outcomes. A therapist effect of 6.7 % was identified based on patient depression (PHQ-9) outcome scores. More effective practitioners compared to less effective practitioners displayed significantly higher levels of mindfulness as well as resilience and mindfulness combined. Implications for policy, research and practice are discussed

    Propagation of Epileptiform Events across the Corpus Callosum in a Cingulate Cortical Slice Preparation

    Get PDF
    We report on a novel mouse in vitro brain slice preparation that contains intact callosal axons connecting anterior cingulate cortices (ACC). Callosal connections are demonstrated by the ability to regularly record epileptiform events between hemispheres (bilateral events). That the correlation of these events depends on the callosum is demonstrated by the bisection of the callosum in vitro. Epileptiform events are evoked with four different methods: (1) bath application of bicuculline (a GABA-A antagonist); (2) bicuculline+MK801 (an NMDA receptor antagonist), (3) a zero magnesium extracellular solution (0Mg); (4) focal application of bicuculline to a single cortical hemisphere. Significant increases in the number of epileptiform events, as well as increases in the ratio of bilateral events to unilateral events, are observed during bath applications of bicuculline, but not during applications of bicuculline+MK-801. Long ictal-like events (defined as events >20 seconds) are only observed in 0Mg. Whole cell patch clamp recordings of single neurons reveal strong feedforward inhibition during focal epileptiform events in the contralateral hemisphere. Within the ACC, we find differences between the rostral areas of ACC vs. caudal ACC in terms of connectivity between hemispheres, with the caudal regions demonstrating shorter interhemispheric latencies. The morphologies of many patch clamped neurons show callosally-spanning axons, again demonstrating intact callosal circuits in this in vitro preparation
    corecore