23 research outputs found

    Lattice Study of the Massive Schwinger Model with a θ\theta term under L\"uscher's "Admissibility" condition

    Get PDF
    We present a numerical study of the massive two-flavor QED in two dimensions with the gauge action proposed by L\"uscher, which allows only ``admissible'' gauge fields. We find that the admissibility condition does not allow any topology changes by the local updation in Hybrid Monte Carlo algorithm so that the configurations in each topological sector can be generated separately. By developing a new method to sum over different topological sectors, we investigate θ\theta vacuum effects. Combining with domain-wall fermion action, we obtain the fermion mass dependence and θ\theta dependence of the meson masses, which are consistent with the analytic results by mass perturbation in the continuum theory.Comment: 3 pages, Lattice2003(chiral

    Demkov-Kunike model for cold atom association: weak interaction regime

    Full text link
    We study the nonlinear mean-field dynamics of molecule formation at coherent photo- and magneto-association of an atomic Bose-Einstein condensate for the case when the external field configuration is defined by the quasi-linear level crossing Demkov-Kunike model, characterized by a bell-shaped pulse and finite variation of the detuning. We present a general approach to construct an approximation describing the temporal dynamics of the molecule formation in the weak interaction regime and apply the developed method to the nonlinear Demkov-Kunike problem. The presented approximation, written as a scaled solution to the linear problem associated to the nonlinear one we treat, contains fitting parameters which are determined through a variational procedure. Assuming that the parameters involved in the solution of the linear problem are not modified, we suggest an analytical expression for the scaling parameter.Comment: 6 pages, 4 figure

    Noncommutative quantum mechanics and Bohm's ontological interpretation

    Full text link
    We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing

    The photon propagator in compact QED_{2+1}: the effect of wrapping Dirac strings

    Full text link
    We discuss the influence of closed Dirac strings on the photon propagator in the Landau gauge emerging from a study of the compact U(1) gauge model in 2+1 dimensions. This gauge also minimizes the total length of the Dirac strings. Closed Dirac strings are stable against local gauge-fixing algorithms only due to the torus boundary conditions of the lattice. We demonstrate that these left-over Dirac strings are responsible for the previously observed unphysical behavior of the propagator of space-like photons (D_T) in the deconfinement (high temperature) phase. We show how one can monitor the number N_3 of thermal Dirac strings which allows to separate the propagator measurements into N_3 sectors. The propagator in N_3 \neq 0 sectors is characterized by a non--zero mass and an anomalous dimension similarly to the confinement phase. Both mass squared and anomalous dimension are found to be proportional to N_3. Consequently, in the N_3=0 sector the unphysical behavior of the D_T photon propagator is cured and the deviation from the free massless propagator disappears.Comment: 13 pages, 13 figures, 1 tabl

    An update on the management of sporadic desmoid-type fibromatosis: A European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG)

    Get PDF
    Desmoid-type fibromatosis is a rare and locally aggressive monoclonal, fibroblastic proliferation characterized by a variable and often unpredictable clinical course. Currently, there is no established or evidence-based treatment approach available for this disease. Therefore, in 2015 the European Desmoid Working Group published a position paper giving recommendations on the treatment of this intriguing disease. Here, we present an update of this consensus approach based on professionals' AND patients' expertise following a round table meeting bringing together sarcoma experts from the European Organization for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group with patients and patient advocates from Sarcoma PAtients EuroNet. In this paper, we focus on new findings regarding the prognostic value of mutational analysis in desmoid-type fibromatosis patients and new systemic treatment options

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    A proposal for a Bohmian ontology of quantum gravity

    Get PDF
    The paper shows how the Bohmian approach to quantum physics can be applied to develop a clear and coherent ontology of non-perturbative quantum gravity. We suggest retaining discrete objects as the primitive ontology also when it comes to a quantum theory of space-time and therefore focus on loop quantum gravity. We conceive atoms of space, represented in terms of nodes linked by edges in a graph, as the primitive ontology of the theory and show how a non-local law in which a universal and stationary wave-function figures can provide an order of configurations of such atoms of space such that the classical space-time of general relativity is approximated. Although there is as yet no fully worked out physical theory of quantum gravity, we regard the Bohmian approach as setting up a standard that proposals for a serious ontology in this field should meet and as opening up a route for fruitful physical and mathematical investigations
    corecore