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Lattice study of the massive Schwinger model with & term
under Luscher’s “admissibility” condition
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 31 May 2003; published 23 October 2003

Luscher’s “admissibility” condition on the gauge field space plays an essential role in constructing lattice
gauge theories which have exact chiral symmetries. We apply the gauge action proposettsr with the
domain-wall fermion action to the numerical simulation of the massive Schwinger model. We find this action
can generate configurations in each topological sector separately without any topology changes. By developing
a new method to sum over different topological sectors, we calculate the meson masses in the fionzero
vacuum.

DOI: 10.1103/PhysRevD.68.074503 PACS nunigerl2.38.Gc

I. INTRODUCTION pressed. In fact, the space of admissible fields is separated
into disconnected subspaces labeled by integers which corre-
There are various problems in gauge theories in whichspond to topological charges in the continuum the@rtQ].
chiral symmetry plays a crucial role. Although lattice gaugeTherefore one can precisely treat topological effects such as
theories provide a method for nonperturbative computationhe 1) problem,d vacuum, and so on. Moreover, cher’s
on these problems, they have not given satisfactory answeggtion is also differentiable and gauge invariant and has a
since the conventional fermion action suffers from eithergood continuum limit as does Wilson’s action.
species doubling1—3] or a lack of chiral symmetry, which ~ Ajthough there are other proposals for improvements of
makes the study of chiral behavior difficult. For this reason ¢ gauge actiofill—17, they do not keep any topological
extensive studies have been made to improve the fermiog .~ res In this sense &cher’s action combined with
aqtion. It was found th_at Iattice_Dirac operators satisfyi_ng th'E‘(.?,insparg—Wilson fermion action would be the best choice to
SmiparNg-V\()llson r,elatloﬁil], V\I'Dh'Ch s, for eaxzm[r)lle, realized investigate chiral symmetries on the lattice. Moreover, an
y the Neuberger's overlap Dirac operal6t6], have exact admissibility condition is indispensable to construct chiral

chiral symmetrieg7]. Such actions are expected to give agauge theories since the gauge symmetry is never realized

f li in th f hysi i ) ; .
undamental improvement in the study iifmeson physics, gwithout exact chiral symmetrief8,18]. Thus it would be

finite temperature QCD, or even chiral gauge theories, de- ) s
spite their complicated forms important to examine how admissibility works and how to-

At the classical level, the Ginsparg-Wilson relation is suf_p_ologicgl structures are realized on the lattice in numerical
ficient to solve the problem of chirality. However, at the Simulations. . .
quantum level, the topological properties of the gauge fields N this paper, we apply Lscher's gauge action to the nu-
in the continuum space should also be kept on the lattice inerical studies of the two-flavor massive Schwinger model
order to reproduce the correct chiral anomaliessdher [19] on the lattice using the domain wall fermion action
found that one can construct lattice gauge theories without20,21 in order to examine how the admissibility works by
breaking topological structures by restricting the link vari- probing the topological properties of the lattice theories. The

ables to satisfy the “admissibility conditior{8] massive Schwinger model is a good test ground for several
reasons; it has been well examined analytically in continuum

[1-P,,(0)|<e forall x,u,v, (1)  space even in strong coupling limit, its vacuum has non-

trivial topological structures due to the chiral anomaly, and it
where also shares many other interesting properties with QCD such

- t - + as the UW1) problem and the confinement. There already exist
Pu(X)=U,(X)U,(x+ua)U, (x+va)U,(X), (2)  extensive studies of topological structures of the massive

_ _ . _ Schwinger model on the lattice with Wilson’s gauge action in
ande is a fixed positive number. In order for the gauge fieldsiq literature[22—28, where our work provides an alterna-

to satisfy this condition automatically, he proposed the fol-ye |attice approach with Lscher's action. Although it will

lowing action as an example: be an interesting subject to make a detailed comparison of
[1-ReP,,(X)] the results with our method with previous calculations, we
s if |[1-P,,(x)|<e, will leave it for future publications and focus on the feasibil-
Se=1{ xizr 1-[I1-P,(X)|/€ . ity study of our method and new results érvacuum in the
) otherwise. present work. i
3) We found that Lgcher’s gauge action can generate con-

figurations in each topological sector separately. We develop
The admissibility condition makes gauge fields smootha new method to evaluate the observables in nongero-
and unphysical configurations such as vortices are supracuum by summing over those in different sectors with cor-
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rect weights.(Our strategy is quite different from that of _
quu(g,m,@):N;w eNZy(g,m),

sampling other sectors by enhancing topology chahgés

32].) We applied our method to the meson correlators and
observe thed dependence of the isotriplet meson mass. We

reproduce well-known continuum results; the isotriplet me-

son mass scaling as a function of the fermion mass and their

0 dependence, and the fact that the isosinglet meson acquire?.| N . . .
a heavier mass than the isotriplet meson due to anofttey  WNereA, denotes the gauge fields in the sector with topo-
so-called U1) probleni. logical chargeN. Using Eq.(6), we can rewriteZg,(g,m, #)

This paper is organized as follows. In Sec. II, we summa@S follows:
rize the main results of the continuum massive Schwinger
model. In Sec. lll, we discuss details of our simulation. In
Sec. IV, we present the results and compare them with con-
tinuum theory. In the Appendix, we comparedaher’s ac- here
tion and Wilson’s action in the quenched approximation, andN
show the impact of the admissibility condition on the topo-
logical and chiral properties.

Zy(g,m) = J DANDYDYexp~Ss-S),  (7)

qu||(g,m,0): f DAMDZDl/lqu_SG_SF_SH)! (8)

S,=—i| d? i Fuv 9
0 I XEE,U,V : ()

It is well-known that this model is equivalent to the two-
component scalar theof34—-36
, |1
S= | 0| 50,6+ ()b (%)
2

1
2 a,b ()b (X)+ 26, (0P~ 20mg

II. REVIEW OF THE MASSIVE SCHWINGER MODEL

A. Continuum theory

We consider the two flavor massive Schwinger model
[33-39 with degenerate masses. The continuum action in
Euclidean space is defined as

S=Sc+5S¢,

co\2mgp ()|, (10

xeos( Jﬁm(x)—g

1
SG=J d2x—4ngW(x)F“V(x),
where uo=g+2/7 andc is a numerical constant.

For m<puq and §~0, perturbative calculations @(m)
show that light scalaty_ has the mass

2
S.— f @23, 0D+ M) (x),

4
0 2/3
m=\/27-r(2cm,ué’zcos—) , (11)
where 2
) and heavy scalag, has the mass
Fu(X)=3,A,(X)—3,A,(X), D:;l Y49, TiA,), m, = uo+[O(m) correction. (12
Now, we discuss the chiral behaviors of the two-flavor

L 0 1 ) 0 —i 5 1, Schwinger model in the chiral limin—0. The action has
Y=y o YTl o) YT ) U2)a=SU(2)axU(L), chiral symmetry in this limit.

U(1), symmetry is broken by the anomaly, which manifests

A, is the gauge field angr is the two-spinor fermion field.
We takeg andm to be positive without losing generality.
If we take the space-time to be a torTi§, the space of

itself in the vacuum with nontrivial topological structures.
We define the isotriplet meson operatary= 1 ysih1
—ry3h, and the isosinglet meson operatge= i ysih,

gauge fields is separated into topological sectors each of i,ysi, by the fermion bilinears. In the bosonization pic-

which is labeled by an integer

1

N=27);

(6)

2 nv
2d Xe, F*",

ture, it is shown thatry propagation corresponds to that of
light scalar¢_ and » propagation corresponds to that of
heavy scalarp, . In the massless limit, Eq$11) and (12)
show thatmy becomes massless whiteremains massive in
accordance with the (@) problem in two-dimensional QED.

where we take the sign convention of the antisymmetric ten-

sor ase;»=1. Then this theory has vacua dependent on

phased. The full path integral is defined by a summation of
integrals in each topological sector;

B. Lattice theory

Let us consider the lattice regularization of the massive
Schwinger model. We take the lattice sizelasL X L5 with

074503-2
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lattice spacinga=1, wherelL; is the length of the third
direction for the domain wall fermior[£0,21]. The action is
defined as follows:

S=BSc+ S,

2 [1-ReP,,(x)]
Se={ F 1-[1-ReP,(x)]/e
0 otherwise,

13

if admissible,

14

2
>, [V4(0Dow(x,5iX'," )y (X')

SF=E E
x,x" s,s’

+ G (X)Dap(X,8X’,8") pL, (X')], (15)

where
Dpw(X,s;x",s")

1

2
=5 2 AL+ 7,)U, (08, fx Bs s
u=1

(1= V) U= ) o s}
+(M=3) 5x,x’ 55,5’ TP 6ss 1s’ 5x,x’
TP_ 85150kt (M=1)P, 65 S5 10k x/

+(m=1)P_ 55,155',L35x,x’ )

Dap(x,s;x’,8")

1

2
=5 2 AL+ YU () 8t foxr Ossr
u=1

(L=, )U L= 1) 8Os}
+(M=3) 5x,x’ 55,5’ TPy 65y 1s’ 5x,x’
+ P, 537 1s’ 5X,X’ - 2P+ 5S,L355’ Y:|_5XYX/

—2P_ 84185 1 Oxx (16)

B=1/g%, M is a constant satisfying<OM<1, =p denotes

summation over all plaquettes, aRd. are the chiral projec-
tion operators;

1i ’)/3
P.=—F—. 1
.= (17
m is the fermion massg'’s are Pauli-Villars regulators
which cancel the bulk contribution.

Since it is not possible to change the topological charge
by a local updating under the admissibility condition, our
lattice theory with Lscher’s gauge action has a topological

invariant,

N=— 2|_7T > InPAX). (18)

PHYSICAL REVIEW D 68, 074503 (2003

This charge corresponds to E@) and gauge field configu-
rations are classified into topological sectors. Each sector
characterized byN has the classical gauge configuration
UZ(x,y) minimizing the action, which is given in E§7.10

of Ref.[8] as

2@ivy 27@Ni
Ui'[“l<x,y>=exp[ i —Tfmy].

2miv, 2mNi
Ug'[N](x,y)=ex% — 5 x], (19

up to gauge transformations, whergandv, are the param-
eters which determine the values of Wilson linexiandy
directions. v, , can take any values in the region<@, ,
<1. This configuration gives constant background electric
fields over the torus.

I1l. LATTICE SIMULATIONS
A. Observables in each sector

The simulation is carried out by the hybrid Monte Carlo
method with Lischer’s gauge action in E¢L4). The matrix
inversions are calculated by the conjugate gradient algo-
rithm.

We take a 1&16x6 lattice at 3=1/g?=0.5 and M
=0.9. The parameter for the admissibility condition is cho-
sen ase=1.0. At this value ofe, we find that initial topo-
logical charge is not changed through the simulati@ee
Fig. 1) For the fermion mass, we choosean
=0.1,0.2,0.3,0.4. Fifty molecular dynamics steps with a step
size A7=0.02 are performed in one trajectory of the hybrid
Monte Carlo algorithm. Configurations are updated per ten
trajectories. We generate 500 configurations for each topo-
logical sector by taking the classical configuration in Eq.
(19) as the initial configuration. From the set of configura-
tions in each sector with topological charlye we measure
the isotriplet meson propagator

Ca()=2 (m(xY)m(0.0)5m. (20
and the isosinglet meson propagator
C,(0=2 (7(xy)7(0.0)m. (21

where( )} ,, denotes the expectation value in tNesector.

B. A new method of summing over different
topological sectors

The hybrid Monte Carlo simulation is performed by small
changes of link variables. Thus choosing the configuration
given by Eq.(19) as the initial condition, we can generate
configurations without changing the topological charge for
any value of the coupling constant.

074503-3
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3 T T T T T

T T T T T T T T I ;
Luscher's action (N=0) ———
ar Luscher’s action (N=2) -------

T T T
Wilson’s action

topological charge
o
1
topological charge
o

_3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
sweeps sweeps

FIG. 1. The comparison of the Monte Carlo evolution of the topological charge with Wilson’s gauge actionsahel’sigauge action.
B=2.0 with Lischer’s gauge action ang= 0.5 with Wilson's gauge action correspond to roughly the same lattice spacing from the string
tension which is obtained from the logarithm of the plaquette expectation value Nt sector. Left: Wilson’s gauge action with
=2.0. Initial topological charge is zero. Right: écher’s gauge action wit=0.5. The solid line shows the case when the initial charge is
zero and the dashed line shows the case when the initial topological charge is two. The topological charge changes for Wilson’s gauge action,
while it does not for Lscher’s action.

Now, we discuss full path integrals on the vacuum. We callRV(3,m) the reweighting factor. Note thai(3,m)
Suppose that we measure the expectation value of an opersatisfies the following differential equation:
tor O,

dZn(B,m)
e _ e / Zy(Bm=—(Se)m- (@D
> e'Nef DUND YD yOe A% S B
(O =— — , (220 By integrating overg again,Zy(3,m) is expressed as
> eNzy(gm)
N=—w

zNw,m):zN(w.m)exp( f;dﬁ'<se>gf,m>- (28)

WhereU;'\j denotes link variables in the sector withand
Then, the reweighting fact®N(3,m) is expressed as

Zn(B,m)= | DUNDyD ye #S%~S¢ (23) o »
" f g RV g, m) = 2 ’m)) exp[ fﬁdﬂ'<<se>2f,m—<se>2.m>

ZO(OO,m

is the lattice counterpart of thé, in Eq. (7). In terms of the

. . . full
expectation values in each topological sect@) ,, can be f dv,dv, de(DN,)2/def DN,)2
rewritten as N
=exp(— BSg min)
e f dv,dv, de(DY,,)%/de(D2;)?
> N0y RV (BM)
ful _N="% ' w
<O>,3,m re ’ (24 Xexr{j dB’(<SG_S('§ min>g’,m_<SG>g’,m) J
> eNRYBm) g
N=o (29)
where whereSY .. is the minimum of the gauge action in the sec-
tor with N given by constant background fields Eg9) and
f DUNDZD yOe PSe~SF Dgw and D,'jp are Dirac operators given by this background.
I i R R p
<O>N _ (25) Note that the integrand vanishes rapidly @s—», so the
B.m , : ,
Zy(B,m) integral overB’ converges.
We can evaluate the full path integrals on theacuum
and by obtaining<0>gm andRY(3,m) in each sector. It should

be noted that this method is only possible with a gauge ac-

tion with the admissibility condition in which the topological
(26) . .

charge is strictly conserved. In our approach we take the

_ Zn(B.m)

N
RIBm=Z Bm)

074503-4
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1.4 T T T T T T l 1 T T T Oé
. Mtermion = Y- — 8-
1.2 data = A 0.9 1 Y fermion = 0-1 === 7
0.0775|N|? / 08k " ]
ir i 0.7 | 8
= L i 06 -
£ 08 P % os " AN
0] - ) 5 F N N -
b B e i [a) L} ..\
n 0.6 04 F N ~ i
0.4 g - 03 1
A 02 \ w _
0.2 | 7 T " T
’//// 01 [ N ’\.\. -
o e ! ! ! ! 0 I I i e
0 0.5 1 15 2 25 3 4 0 1 2 3 4 5

topological charge N

topological charge N

FIG. 2. Minimum action in each topological sector is plotted as  FIG. 4. |N| dependence of D¥tfor the fermion massm
a function of the topological charge. Closed squares are the data ard0.1,0.2 is shown.
the dashed line is the fit with a quadratic function.

C. Calculation of RN(8,m)

property that Lscher’s gauge action allows no topology Let us discuss how to evaluaR¥(8,m). The classical

change at all as an advantage and treat the sum over thginima of the gauge actioSg ., are evaluated easily. In
topologies in a controlled fashion. This is in contrast to therig. 2, we can see th& ., is numerically proportional to

conventional gauge actions, with which the topology chang¢N|2_

is suppressed but not completely prohibited so that one has The fermion determinant def on classical background
to tackle the problem of enhancing topology changes. in the sector withN is numerically calculated using the

A related but somewhat different approach was propose#iouseholder method and the QL meth@8]. The integral
by Durr [37] where one makes a quenched calculation andver the moduliv, , is approximated by the weighted sum
give the whole fermion determinant as the reweighting fac-over the discrete set of points uniformly distributed in the
tor. He also proposed an approximation in which one rewhole integration region as in Fig. 3. The number of points
places the determinant for the given configuration by thefor the weighted sums are >5 for both
determinant of a common representative configuration fodet(D3,,)%/det(D3p)? and for detD},,)%/det(DRp)? with
the given sector, which reduces the enormous computation&l# 0. The value of
effort.

Of course, computing the reweighting factors for the sum
over topologies requires extra work. Whether this program
works must be examined in practical simulations. In the fol-
lowing sections we show that our new method is valid and
full path integrals can be evaluated with controlled statistical
and systematic errors. is plotted in Fig. 4. It decreases M| increases, due to the

contribution of small eigenvalues proportional to the fermion

J dv,dv, de(D},)?%/de(D);)?
Def¥=

(30
f dv,dv,de( DY)/ de(D%y)?

OFRLNWRAO
OFRLNWMAOG

0.4
\Z1 06 03

FIG. 3. Three-dimensional plot of the dependence of the fermion determinant D&ﬁi(\,)zldet@ﬁp)z. Left: N=0 case, rightN=1
case.
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TABLE I. The value offdB’S),, in each sector. 200 : : : : :
Topological charge JdB’ S Error .
0 0 0 150 % E i h
1 —0.201 0.088
2 0.099 0.088
3 0.32 0.12 < 100 y
4 0.47 0.14 605
50 -
mass, which emerge in the nontrivial topological sectors
since the Atiyah-Singer index theorem is realized on the lat-
tice in theL3—co limit [7]. 0 ' ' ' ' '
In order to obtain the exponential factor in E§9), we 0 0.05 01 ) 0'15_ 02 0.25 03
need to evaluate the integral of the following quantity string tension o

FIG. 6. Lattice spacing dependence of the dimensionless quan-

tity Azmi/(m“a). Horizontal axis is the string tension in lattice
. N , . , . unit. The “string tension” is obtained from the logarithm of the

SinceSg,(8’,m) decreases rapidly g8’ —, the integral  gypectation value of a plaquette in the=0 sector.
of SN, over B’ is well approximated by a weighted sum
over the discrete set of points foBl,(B3’,m) at B’ up to a constant normalization factor. Here we have ignored
=0.5,1.0,1.5,2.0. For eagh’, we evaluatésg‘ubt,(ﬁ’,m) by |N|>4 sectors since they only give contributions less than
sampling more than 5000 configurations. The results ard.2% of zero sector for the pion. Then we can get the pion
summarized in Table I. mass including full nonperturbative effects amddepen-

Total reweighting factoRN(3,m) at 8=0.5 andm=0.2  dence. In this calculation, the propagators are fitted by mini-
is plotted in Fig. 5. It is shown that higher topological sectorsmizing thex? and the total statistical errors are estimated by
are indeed suppressed by the reweighting factor. summing those in individual sections in quadrature.

Finally, combining the correlators and the reweighting We compute the eta meson propagator in a similar manner
factors, we obtain the total expectation values on theas
nonzero# vacuum as

S’s\‘ubtr(:B,7m)E<SG_Sg min>2',m_<SG>?g',m- (31

> (1(%,Y) 7(0,0))5u
; (m(X,y) (0,0 )t Y

4
=2, "2 () n(0.0)5nR(B.m).

4
= > eN (m(x,y)m(0,0)} RY(B.M),
N=ma Ty (33

(32) However, it seems that the propagator obtained by summing

through|N|<4 sectors does not saturate so that the trunca-

1.2 ' ' Migrmion = 0.2 —8— tion error is still large. Obviously, higher topological sectors
ermen are necessary. In this paper we only present the status of our
i T exploratory studies but no definite quantitative results.
£ 08 . DS ,
8 . ystematlc errors
§’ 0.6 - % i In this section we discuss possible systematic errors.
) These error estimations show that our simulation is reason-
g o4l L i able and the results are reliable.
e - Let us now study the lattice spacing dependence. We mea-
02 b M | sure a dimensionless quantitA= m?,/(m“a) at g
=0.5,1.0,1.5,2.0 in the zero topological sector, where
0 ! ! ! n denotes pion mass and denotes the string tension defined
0 1 2 3 4 5 from the logarithm of the plaquette expectation value in the

topological charge N zero sector. As Fig. 6 indicates, the result®at0.5 show no
large lattice spacing dependence which suggests that the dis-
FIG. 5. The total reweighting factd®™(0.5,0.2) is plotted as a Cretization error is under control.
function of the topological charge. The factor falls off rapidly as the ~ Next we discuss finite size effects for the space-time size
topological charge increases. L and for the extra dimension site. We measure the pion

074503-6
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1 . . . . TABLE Il. The reweighting factor in each sector from two dif-
data —=— ferent methods of evaluating the integral lf,,,; the trapezoidal
0.609 -----—-- rule and the integral of the polynomial fit. The resulting pion mass
08 - ; . is are also given.
R — = - | By trapezoidal rule By fit
%]
g R%(0.5,0.2) 1.0 1.0
F o4 b | R'(0.5,0.2) 0.637%6) 0.5922)
R?(0.5,0.2) 0.441,39) 0.4516)
02 R3(0.5,0.2) 0.20(25) 0.3218)
“T ] R*(0.5,0.2) 0.063@®1) 0.07246)
m_(at 6=0) 0.6477) 0.65034)
0 1 1 1 1
0 5 10 15 20 25
lattice size L with N#0 has almost ne dependence. In fact this remark-

) o able flat dependence is also seen in the continuum counter-
FIG. 7. The dependence of the pion mass on the latticelsiae 41t apalytically39]. We therefore conclude that the error in

the space-time direction measured in the zero sector. The ferm|o1!'|1]e weighted sum is even more negligible for the nonzero
mass ism=0.2. Closed symbols are the data and the dashed "n?opological sector

Zzgg:dtgscgttfii;nfg_s fdr=16. The pion mass shows no volume Since the integral OSQubtr over B’ is approximated by the
trapezoidal rule using the data for the discrete se{B6f

mass on the lattices of size?XL,=82X6, 10PX 6,16 points, the error in this approximation should be estimated.

X6, 202X 6, 162X 2, 162X 4, and 18X 10 in the zero sec- FOr this purpose we evaluate the integrasf,,, in an alter-

tor. Figure 7 shows. dependence and Fig. 8 shols de- ~ Native way, in which we fit the discrete set of data with the

pendence. We find that the meson mass is stable farger ~ function of the form

than 16 and fot_ larger than 6 so that the finite size error is

also under control with our choice of the lattice size? 16 QB m):ﬂ+2 (34)
X 6. The discretization error and finite size errors from the ubtR = 52 ﬁ’g:
nonzero topological sector are similarly under control.

We now study the error in the integration over the moduli ) .
v1,. In order to estimate the systematic error we also evalu@nd compute the integral &, over 8 analytically. Table
ate the integral by the weighted sum of»00 points. We |l shows the difference of the two ways of evaluation. The
find that the change is very tirfyelative change-10~8) and pion masses are consistent with each other. Thus we find that
is negligible compared to other systematic errors, as is exhe approximation for the integral o, does not give
pected from the mild dependence of d%w)z/det(Dgp)z Iarge SyStematiC errors in the meson mass. We now Study the

in Fig. 3. Figure 3 also shows that dBf},)%detDp)? truncation error in the sum over topological sectors. As we
discussed before, we neglebt|>4 sectors since these con-

1 tributions are suppressed by a large value of action and fer-
T T T T data T
0.609 -------
0.7 T T T T T T
08 - . 0.590 -------
0.68 .
06 - 0.66 .
e = B S
(7} . as] | .
é 2 0.64 . E E
E . © o062 4
0.4 L 4 J %
= 06 .
w -1 _ __ _ @w = m _____|
g 058 [ + % } -
02 | i £ :
F 056 [ .
0 1 1 1 1 1 0.54 I T
0 2 4 6 8 10 12 0.52 .
lattice size Ly 05 I I I I I !
0 1 2 3 4 5 6 7
FIG. 8. The dependence of the pion mass on the latticelsjze highest topological charge Ny,

in the third direction measured in the zero sector. The fermion mass

ism=0.2. Open symbols are the data and the dashed line shows the FIG. 9. The pion mass from the sum ov@t|<|N,,| sector
fitted mass folL;=6. The pion mass shows no volume dependencecontributions form=0.2 andd=0.37. No change in the mass for
for L;=6. Nma=4 is observed.
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0.1 T T T T T 14 T T T T T T T
[ 1 0=0 —=—
N=0 -+ | 6=0.31 —o—
N=1 ---%-- 1 1.2 + " E
L N=2 :--%-- {
N=3 i@ L i
W N=4 -~ L E': 1 %E
c 7
2 s 08 | B
8 E %E i
() 1
: . ; e AT T
S . ) N e O
o 04 | i
¥ 4
= S . 02 | -
o
0.01 L . n L ! 0 L I I I L ! !
6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8
X
FIG. 10. The pion propagator in each sector rioe0.2. FIG. 12. The effective mass plot of the pion for=0.2. Closed

squares show the data fére=0 and the dashed line shows the result
mion zero modes. Figure 9 shows the pion masse at of the fit. Open diamonds show the data o+ 0.37 and the dotted

=0.37 measured for a variety of the highest topologicalline shows the fit result.
chargeN,,.x.- Therefore the truncation error in the sum over ,
topological sectors are negligible in comparison with the sta- m,(m)=am**+b. (35

tistical errors for the pion.
Figure 13 shows that Eq(35 fits the data very well

V. MESON MASSES (x’/dof=0.39) so that the fermion mass dependence is con-
: sistent with the continuum theory. The residual mass of the
A. Pion mass and@ dependence pion measured in the chiral limit is also tiny bs- —0.057

. . . . +0.060, which shows that the violation of the chiral sym-
Figure 10 shows pion propagators in each topological sec-

. . “metry is very small.
tor and F|g: 11 shows full propagators at varigusie mea . In Fig. 14 we present th@ dependence of the pion mass
sure the pion mass by fitting these data to the hyperbolic, | dm= kable f h Iti
cosine function. The fit range is=[5,8] for which we find a atf=0.5 andm=0.2. As a remarkable feature, the result is
L . ' — in perfect agreement with that in the continuum theory in the
good plateau in the effective mass plot as shown in Fig. 12 /(2 05 ion. A d | of the d d
In fitting x2/dof is also a small valuey®/dof<0.1) pI(2m)<0.5 region. A good control of the dependence
= shows that our method for summing over different topologi-

.Flgure 13 shOV\_/s pion mass 80 as a funﬁtlon (,)f fer- cal sectors with Lacher's gauge action indeed works nu-
mion massm. We ignore them dependence o8,,,(8',m) merically

and use then=0.2 result for allm. We fit the results to the At large @ statistical errors increase, due to cancellations

following function suggested by the continuum theory with a : -
: o . of propagators among different topological sectors. In the
possible additional constant tetmfrom the residual mass of propag g polog

pion:

14 T T T T T T T T T
o3 data —x—
1 : : : : . 12 | 2.07m“°-0.0574 - A
13 0=00 —+—— 1 X”’/
¥ 0 =0.177 ~--x-—- 1L -
I 0=0.271 +-- - ] e
Ed = fooeeefes ¥ -
F 2 6=0.3m -8 s ] , 08F .
I | a o
5 b * i * * p E 0.6 | /// -
8 L i 04 | i
e 0lp » * % A e
8 - x £, % x 02 L 7 .
0 X 0 e
(Y 4
o * i
o o g -0.2 1 1 1 1 1 1 1 1 1
o 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5
0.01 . ! L L fermion mass
4 6 8 10 12 14
X FIG. 13. The fermion mass dependence of the pion mass for

=0. The crosses are the lattice data and the dashed line is the result
FIG. 11. The full pion propagators witthn=0.2 for variousé of the fit with the function in Eq(35). The chiral behavior is con-
are plotted. sistent with that of continuum theory.
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16. The full propagatom at m=0.2 and #=0 (closed

symbols are the lattice data. The dashed line is the analytical resutduares The pion propagator is also plotted for comparisopen
of the # dependence in the continuum theory, where the normalizacircles. The propagators are normalized by the valug=at.
tion is fitted by the lattice results. F@/ (27)<0.5, the pion mass

is proportional to co#(2)%?, which is in complete agreement with

the continuum results.

calculation, we approximate the integral 8,,(3’,m) by

the trapezoidal rule for the discrete set@f points, but this
does not seem to be the reason for the large fluctuation in t

(nm)y= —2<tr( 73373%) > +4<tr( 73%) tr(

1

Y3 5) > )
(36

where the first term is the same as the flavor nonsinglet
h@ropagator and the second term gives the “hair-pin” or dis-

6/(2m)>0.5 region. Thﬁ main nonperturbative contribution connected contribution to the flavor singlet operator. Because
comes from Dét and S{;,(8’',m) gives only perturbative the number of physical space-time points is only1, we

effects of orderg’ 2.

might not improve the situation.

evaluateSg

As the final subject, we would like to present the result of
our exploratory measurement of thgmeson mass in order

N

B. » meson correlator and U1) problem

of two parts:

14
12

1
0.8
0.6

correlation

0.4
0.2
0
-0.2

FIG.

. . making quantitative studies difficult. One of the major
to study the topological structure. Thepropagator consists
1.6 T T T T T T T
E 1.34 —
L ' ' ' ' ' IN:O J ] N } ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ]
N=1 -3
- N=2 :-%-: 12 7
LT N=3 +--
* - - T T - = -4 - —
-7 T i T4 . w -‘ i N4F7IT4_. w 1
- T A I .t g osl .
oo 4 T L R £ '
I R Lol = | )
I R s N O S B ) i |
§ ¥ ER R A N % < 0.4
L R S X ¥ x O X B |
R | 02
- E Sz 3 og ooy oxd I 1 1 1 1 ! ! !
EE I I A 0
. . j.i i EE B R o 1 2 3 4 5 6 7 8
0 4 6 8 10 12 14 16 X
X
FIG. 17. The effective mass plot of the full propagator for
15. The propagator of in each sector an=0.2. m=0.2, 6=0. The dashed line shows the fit result.

compute the “hair-pin” contribution by brute force, namely

We suspect that this large fluctuation is an example of théy solving the fermion propagator for all points without re-
well-known phase problem. Simply increasing the statisticgying on the noise methof#0] or Kuramashi metho41].
Figure 15 shows the contribution of the second term in
Of course in application to QCD, it will be important to each sector, whereas Fig. 16 shows the @yimmetrized »

uwt(B",m) and other observables more precisely. propagator am=0.2 and#=0. We also present effective

mass plot in Fig. 17. We find that the fall af propagator is
steeper than that ofr which gives qualitatively consistent

results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
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sources of errors is the truncation in the topological sectors, useful not only mathematically but also in a practical
since summation with topological charge fd4 does not point of view. In the conventional approach, there are
show a satisfactory saturation unlike the case of the pion. two technical problems, i.e., violation of chirality at

Therefore further studies with a sufficiently larger number of  strong coupling and the slowing down of the topology

topological sectors are necessary to confirm the stability of  change in unquenched simulation. For the former prob-
the data against the truncation. One also needs new ideas for |em1 the improved gauge actions which suppress the dis-

efficiently reducing the statistical errors. locations are proposed. However, in principle the sup-
pression of the dislocations also suppresses the topology
V. SUMMARY AND DISCUSSION change so that the latter problem becomes even more

difficult. Our method makes the improvement to the ex-

In this paper, we elucidate the role of the admissibility - . .
treme and prohibits both the dislocation and the topology

condition on the topological and chiral properties in lattice

gauge theories by applying kaher’s action together with change completely, however, by computing each topo-
domain wall fermions to a numerical simulation of the mas-  ogical sector and its reweighting factor we can reconcile
sive Schwinger model. To investigate tiledependence of the solutions to the topology change problem and the

the correlators, we have developed a method to sum over dislocation problem at the same time.
different topological sectors. We have found thastlier's (3) Once each topological sector can be computed sepa-
action is indeed applicable to Monte Carlo simulations and  rately, we can obtain & dependence at once.
all the results are consistent with those in the continuum4) Aside from the fact that we must simulate for each sector
theory, confirming the validity of our method. the typical simulation, time needed for the trivial topo-
We summarize the features of this action here agdin. logical sector is no larger than that of using Wilson’s
In Luscher’s action, the gauge field strength is uniquely de-  plaquette action. For the nonzero topological charge sec-
termined from the plaquette and the gauge action is a smooth  tor, one can also increase the statistics at will very effi-
function of the field strength2) The range of the action is ciently, in contrast to the conventional method where one
not compact; can increase the statistics only by reaching the thermal
0=Sg <. 37) equilibrium. In th.is sense, our methqd would have .ad-
vantages in physical quantities for which the topological

This is the same situation as continuum theory. We can treat S€ctors with larger instanton numbers give larger contri-
the theory in terms of the field strength rather than  butions.

plaquettes. According to these featuressther’s gauge ac- ) . ) o )
tion has many advantages. It will be interesting to explore the possibility of applying

. . . i Luscher’s type of gauge action to QCD in four dimensions.

(1) The use of this gauge action with the domain wall fer-The reweighting factor, however, would not be easy to cal-
mion action is valid even for the strong coupling regime cyjate since the Dirac matrix is very large and the exact
since unphysical configurations are suppresé&. find  topological index as well as the structure of the gauge field
the suppression effect is especially remarkable inspace are much more complicated in four-dimensional torus
quenched approximation as discussed in the Appendix.[9]. Moreover, one should find the minimum of the gauge
(2) We can treat the topological properties of the latticeaction in each sector since the self-dual classical solutions
theories precisely. This exact topological treatment isare not known in some cases. We still hope that the under-

10 T T T T

10 T T T T T T AL
Luscher’s action

T T T
Wilson’s action

topological charge
topological charge
o

-10 1 1 1 1 1 1 1 I I -10 1 1 1 1 1 I I I I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

sweeps sweeps
FIG. 18. The Monte Carlo evolutions of the topological charge in the quenched calculation with Wilson’s gauge actioscned’s u

gauge action for the gauge couplings having the same string tension. Left: Wilson's gauge agtioB.4t Right: Lischer's gauge action
at B=1.0. Lischer’s gauge action shows no topology change.
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FIG. 19. The chiral behaviors of the pion mass in the quenched calculation with Wilson’s gauge actiorsanersugauge action for
the gauge couplings having the same string tension. In this quenched study, 100 configuratidis Qvitine taken for the calculation with
each action. Left: Wilson’s gauge action At=3.4. Right: Lischer’s gauge action g8=1.0. Wilson’s gauge action suffers from large
fluctuation while Lischer’s gauge action shows a good chiral behavior. Both of them are calculated by domain-wall fermions.

standing of the topological properties in lattice QCD will be to be 32<32x 5 and measure the pion mass. Gauge coupling

improved by applying Lacher’s admissibility condition. B is chosen to give the same string tensior0.18; B
=1.0 for Luscher’s action ang= 3.4 for Wilson’s action.
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