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Lattice study of the massive Schwinger model with au term
under Lüscher’s ‘‘admissibility’’ condition

Hidenori Fukaya and Tetsuya Onogi
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 31 May 2003; published 23 October 2003!

Lüscher’s ‘‘admissibility’’ condition on the gauge field space plays an essential role in constructing lattice
gauge theories which have exact chiral symmetries. We apply the gauge action proposed by Lu¨scher with the
domain-wall fermion action to the numerical simulation of the massive Schwinger model. We find this action
can generate configurations in each topological sector separately without any topology changes. By developing
a new method to sum over different topological sectors, we calculate the meson masses in the nonzerou
vacuum.

DOI: 10.1103/PhysRevD.68.074503 PACS number~s!: 12.38.Gc

I. INTRODUCTION

There are various problems in gauge theories in which
chiral symmetry plays a crucial role. Although lattice gauge
theories provide a method for nonperturbative computation
on these problems, they have not given satisfactory answers
since the conventional fermion action suffers from either
species doubling@1–3# or a lack of chiral symmetry, which
makes the study of chiral behavior difficult. For this reason,
extensive studies have been made to improve the fermion
action. It was found that lattice Dirac operators satisfying the
Ginsparg-Wilson relation@4#, which is, for example, realized
by the Neuberger’s overlap Dirac operator@5,6#, have exact
chiral symmetries@7#. Such actions are expected to give a
fundamental improvement in the study ofK meson physics,
finite temperature QCD, or even chiral gauge theories, de-
spite their complicated forms.

At the classical level, the Ginsparg-Wilson relation is suf-
ficient to solve the problem of chirality. However, at the
quantum level, the topological properties of the gauge fields
in the continuum space should also be kept on the lattice in
order to reproduce the correct chiral anomalies. Lu¨scher
found that one can construct lattice gauge theories without
breaking topological structures by restricting the link vari-
ables to satisfy the ‘‘admissibility condition’’@8#

i12Pmn~x!i,e for all x,m,n, ~1!

where

Pmn~x!5Um~x!Un~x1m̂a!Um
† ~x1 n̂a!Un

†~x!, ~2!

ande is a fixed positive number. In order for the gauge fields
to satisfy this condition automatically, he proposed the fol-
lowing action as an example:

SG5H b (
x,m.n

@12RePmn~x!#

12i12Pmn~x!i /e
if i12Pmn~x!i,e,

` otherwise.
~3!

The admissibility condition makes gauge fields smooth
and unphysical configurations such as vortices are sup-

pressed. In fact, the space of admissible fields is separated
into disconnected subspaces labeled by integers which corre-
spond to topological charges in the continuum theory@9,10#.
Therefore one can precisely treat topological effects such as
the U~1! problem,u vacuum, and so on. Moreover, Lu¨scher’s
action is also differentiable and gauge invariant and has a
good continuum limit as does Wilson’s action.

Although there are other proposals for improvements of
the gauge action@11–17#, they do not keep any topological
structures. In this sense Lu¨scher’s action combined with
Ginsparg-Wilson fermion action would be the best choice to
investigate chiral symmetries on the lattice. Moreover, an
admissibility condition is indispensable to construct chiral
gauge theories since the gauge symmetry is never realized
without exact chiral symmetries@8,18#. Thus it would be
important to examine how admissibility works and how to-
pological structures are realized on the lattice in numerical
simulations.

In this paper, we apply Lu¨scher’s gauge action to the nu-
merical studies of the two-flavor massive Schwinger model
@19# on the lattice using the domain wall fermion action
@20,21# in order to examine how the admissibility works by
probing the topological properties of the lattice theories. The
massive Schwinger model is a good test ground for several
reasons; it has been well examined analytically in continuum
space even in strong coupling limit, its vacuum has non-
trivial topological structures due to the chiral anomaly, and it
also shares many other interesting properties with QCD such
as the U~1! problem and the confinement. There already exist
extensive studies of topological structures of the massive
Schwinger model on the lattice with Wilson’s gauge action in
the literature@22–28#, where our work provides an alterna-
tive lattice approach with Lu¨scher’s action. Although it will
be an interesting subject to make a detailed comparison of
the results with our method with previous calculations, we
will leave it for future publications and focus on the feasibil-
ity study of our method and new results onu vacuum in the
present work.

We found that Lu¨scher’s gauge action can generate con-
figurations in each topological sector separately. We develop
a new method to evaluate the observables in nonzero-u
vacuum by summing over those in different sectors with cor-
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rect weights.~Our strategy is quite different from that of
sampling other sectors by enhancing topology changes@29–
32#.! We applied our method to the meson correlators and
observe theu dependence of the isotriplet meson mass. We
reproduce well-known continuum results; the isotriplet me-
son mass scaling as a function of the fermion mass and their
u dependence, and the fact that the isosinglet meson acquires
a heavier mass than the isotriplet meson due to anomaly@the
so-called U~1! problem#.

This paper is organized as follows. In Sec. II, we summa-
rize the main results of the continuum massive Schwinger
model. In Sec. III, we discuss details of our simulation. In
Sec. IV, we present the results and compare them with con-
tinuum theory. In the Appendix, we compare Lu¨scher’s ac-
tion and Wilson’s action in the quenched approximation, and
show the impact of the admissibility condition on the topo-
logical and chiral properties.

II. REVIEW OF THE MASSIVE SCHWINGER MODEL

A. Continuum theory

We consider the two flavor massive Schwinger model
@33–35# with degenerate masses. The continuum action in
Euclidean space is defined as

S5SG1SF ,

SG5E d2x
1

4g2
Fmn~x!Fmn~x!,

SF5E d2x(
i 51

2

c̄ i~x!~D” 1m!c i~x!, ~4!

where

Fmn~x!5]mAn~x!2]nAm~x!, D” 5 (
m51

2

gm~]m1 iAm!,

g15S 0 1

1 0D , g25S 0 2 i

i 0 D , g352 ig1g2, ~5!

Am is the gauge field andc is the two-spinor fermion field.
We takeg andm to be positive without losing generality.

If we take the space-time to be a torusT2, the space of
gauge fields is separated into topological sectors each of
which is labeled by an integer

N5
1

4pET2
d2xemnFmn, ~6!

where we take the sign convention of the antisymmetric ten-
sor ase1251. Then this theory has vacua dependent on
phaseu. The full path integral is defined by a summation of
integrals in each topological sector;

Zfull~g,m,u!5 (
N52`

1`

eiNuZN~g,m!,

ZN~g,m!5E DAm
NDc̄Dc exp~2SG2SF!, ~7!

whereAm
N denotes the gauge fields in the sector with topo-

logical chargeN. Using Eq.~6!, we can rewriteZfull(g,m,u)
as follows:

Zfull~g,m,u!5E DAmDc̄Dc exp~2SG2SF2Su!, ~8!

where

Su52 i E d2x
u

4p
emnFmn. ~9!

It is well-known that this model is equivalent to the two-
component scalar theory@34–36#

S5E d2xF1

2
]mf1~x!]mf1~x!

1
1

2
]mf2~x!]mf2~x!1

m0
2

2
@f1~x!#222cmg

3cosSA2pf1~x!2
u

2D cos@A2pf2~x!#G , ~10!

wherem05gA2/p andc is a numerical constant.
For m!m0 andu;0, perturbative calculations ofO(m)

show that light scalarf2 has the mass

m25A2pS 2cmm0
1/2cos

u

2D 2/3

, ~11!

and heavy scalarf1 has the mass

m15m01@O~m! corrections#. ~12!

Now, we discuss the chiral behaviors of the two-flavor
Schwinger model in the chiral limitm→0. The action has
U(2)A.SU(2)A3U(1)A chiral symmetry in this limit.
U(1)A symmetry is broken by the anomaly, which manifests
itself in the vacuum with nontrivial topological structures.
We define the isotriplet meson operatorp0[c̄1g3c1

2c̄2g3c2 and the isosinglet meson operatorh[c̄1g3c1

1c̄2g3c2 by the fermion bilinears. In the bosonization pic-
ture, it is shown thatp0 propagation corresponds to that of
light scalarf2 and h propagation corresponds to that of
heavy scalarf1 . In the massless limit, Eqs.~11! and ~12!
show thatp0 becomes massless whileh remains massive in
accordance with the U~1! problem in two-dimensional QED.

B. Lattice theory

Let us consider the lattice regularization of the massive
Schwinger model. We take the lattice size asL3L3L3 with
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lattice spacinga51, whereL3 is the length of the third
direction for the domain wall fermions@20,21#. The action is
defined as follows:

S5bSG1SF , ~13!

SG5H (
P

@12RePmn~x!#

12@12RePmn~x!#/e
if admissible,

` otherwise,
~14!

SF5(
x,x8

(
s,s8

(
i 51

2

@c̄s
i ~x!DDW~x,s;x8,s8!cs8

i
~x8!

1fs
i* ~x!DAP~x,s;x8,s8!fs8

i
~x8!#, ~15!

where

DDW~x,s;x8,s8!

5
1

2 (
m51

2

$~11gm!Um~x!dx1m̂,x8ds,s8

1~12gm!Um
† ~x2m̂ !dx2m̂,x8ds,s8%

1~M23!dx,x8ds,s81P1ds11,s8dx,x8

1P2ds21,s8dx,x81~m21!P1ds,L3
ds8,1dx,x8

1~m21!P2ds,1ds8,L3
dx,x8 ,

DAP~x,s;x8,s8!

5
1

2 (
m51

2

$~11gm!Um~x!dx1m̂,x8ds,s8

1~12gm!Um
† ~x2m̂ !dx2m̂,x8ds,s8%

1~M23!dx,x8ds,s81P1ds11,s8dx,x8

1P2ds21,s8dx,x822P1ds,L3
ds8,1dx,x8

22P2ds,1ds8,L3
dx,x8 . ~16!

b51/g2, M is a constant satisfying 0,M,1, (P denotes
summation over all plaquettes, andP6 are the chiral projec-
tion operators;

P65
16g3

2
. ~17!

m is the fermion mass.f i ’s are Pauli-Villars regulators
which cancel the bulk contribution.

Since it is not possible to change the topological charge
by a local updating under the admissibility condition, our
lattice theory with Lu¨scher’s gauge action has a topological
invariant,

N52
i

2p (
x

ln P12~x!. ~18!

This charge corresponds to Eq.~6! and gauge field configu-
rations are classified into topological sectors. Each sector
characterized byN has the classical gauge configuration
Um

cl(x,y) minimizing the action, which is given in Eq.~7.10!
of Ref. @8# as

U1
cl[N]~x,y!5expH 2p in1

L
2

2pNi

L
dx,LyJ ,

U2
cl[N]~x,y!5expH 2p in2

L
1

2pNi

L2
xJ , ~19!

up to gauge transformations, wheren1 andn2 are the param-
eters which determine the values of Wilson lines inx andy
directions.n1,2 can take any values in the region 0<n1,2
,1. This configuration gives constant background electric
fields over the torus.

III. LATTICE SIMULATIONS

A. Observables in each sector

The simulation is carried out by the hybrid Monte Carlo
method with Lüscher’s gauge action in Eq.~14!. The matrix
inversions are calculated by the conjugate gradient algo-
rithm.

We take a 1631636 lattice at b51/g250.5 and M
50.9. The parameter for the admissibility condition is cho-
sen ase51.0. At this value ofe, we find that initial topo-
logical charge is not changed through the simulation.~See
Fig. 1.! For the fermion mass, we choosem
50.1,0.2,0.3,0.4. Fifty molecular dynamics steps with a step
sizeDt50.02 are performed in one trajectory of the hybrid
Monte Carlo algorithm. Configurations are updated per ten
trajectories. We generate 500 configurations for each topo-
logical sector by taking the classical configuration in Eq.
~19! as the initial configuration. From the set of configura-
tions in each sector with topological chargeN, we measure
the isotriplet meson propagator

Cp~x!5(
y

^p~x,y!p~0,0!&b,m
N , ~20!

and the isosinglet meson propagator

Ch~x!5(
y

^h~x,y!h~0,0!&b,m
N , ~21!

where^ &b,m
N denotes the expectation value in theN sector.

B. A new method of summing over different
topological sectors

The hybrid Monte Carlo simulation is performed by small
changes of link variables. Thus choosing the configuration
given by Eq.~19! as the initial condition, we can generate
configurations without changing the topological charge for
any value of the coupling constant.
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Now, we discuss full path integrals on theu vacuum.
Suppose that we measure the expectation value of an opera-
tor O,

^O&b,m
full 5

(
N52`

1`

eiNuE DUm
NDc̄DcOe2bSG2SF

(
N52`

1`

eiNuZN~b,m!

, ~22!

whereUm
N denotes link variables in the sector withN and

ZN~b,m!5E DUm
NDc̄Dce2bSG2SF ~23!

is the lattice counterpart of theZN in Eq. ~7!. In terms of the
expectation values in each topological sector,^O&b,m

full can be
rewritten as

^O&b,m
full 5

(
N52`

1`

eiNu^O&b,m
N RN~b,m!

(
N52`

1`

eiNuRN~b,m!

, ~24!

where

^O&b,m
N 5

E DUm
NDc̄DcOe2bSG2SF

ZN~b,m!
, ~25!

and

RN~b,m!5
ZN~b,m!

Z0~b,m!
. ~26!

We callRN(b,m) the reweighting factor. Note thatZN(b,m)
satisfies the following differential equation:

]ZN~b,m!

]b Y ZN~b,m!52^SG&b,m
N . ~27!

By integrating overb again,ZN(b,m) is expressed as

ZN~b,m!5ZN~`,m!expS E
b

`

db8^SG&b8,m
N D . ~28!

Then, the reweighting factorRN(b,m) is expressed as

RN~b,m!5
ZN~`,m!

Z0~`,m!
expF E

b

`

db8~^SG&b8,m
N

2^SG&b8,m
0

!G
5exp~2bSG min

N !
E dn1dn2 det~DDW

N !2/det~DAP
N !2

E dn1dn2 det~DDW
0 !2/det~DAP

0 !2

3expF E
b

`

db8~^SG2SG min
N &b8,m

N
2^SG&b8,m

0
!G ,
~29!

whereSG min
N is the minimum of the gauge action in the sec-

tor with N given by constant background fields Eq.~19! and
DDW

N andDAP
N are Dirac operators given by this background.

Note that the integrand vanishes rapidly asb8→`, so the
integral overb8 converges.

We can evaluate the full path integrals on theu vacuum
by obtaining^O&b,m

N andRN(b,m) in each sector. It should
be noted that this method is only possible with a gauge ac-
tion with the admissibility condition in which the topological
charge is strictly conserved. In our approach we take the
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3
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FIG. 1. The comparison of the Monte Carlo evolution of the topological charge with Wilson’s gauge action and Lu¨scher’s gauge action.
b52.0 with Lüscher’s gauge action andb50.5 with Wilson’s gauge action correspond to roughly the same lattice spacing from the string
tension which is obtained from the logarithm of the plaquette expectation value in theN50 sector. Left: Wilson’s gauge action withb
52.0. Initial topological charge is zero. Right: Lu¨scher’s gauge action withb50.5. The solid line shows the case when the initial charge is
zero and the dashed line shows the case when the initial topological charge is two. The topological charge changes for Wilson’s gauge action,
while it does not for Lu¨scher’s action.
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property that Lu¨scher’s gauge action allows no topology
change at all as an advantage and treat the sum over the
topologies in a controlled fashion. This is in contrast to the
conventional gauge actions, with which the topology change
is suppressed but not completely prohibited so that one has
to tackle the problem of enhancing topology changes.

A related but somewhat different approach was proposed
by Dürr @37# where one makes a quenched calculation and
give the whole fermion determinant as the reweighting fac-
tor. He also proposed an approximation in which one re-
places the determinant for the given configuration by the
determinant of a common representative configuration for
the given sector, which reduces the enormous computational
effort.

Of course, computing the reweighting factors for the sum
over topologies requires extra work. Whether this program
works must be examined in practical simulations. In the fol-
lowing sections we show that our new method is valid and
full path integrals can be evaluated with controlled statistical
and systematic errors.

C. Calculation of RN
„b,m…

Let us discuss how to evaluateRN(b,m). The classical
minima of the gauge actionSG min

N are evaluated easily. In
Fig. 2, we can see thatSG min

N is numerically proportional to
uNu2.

The fermion determinant detD2 on classical background
in the sector withN is numerically calculated using the
Householder method and the QL method@38#. The integral
over the modulin1,2 is approximated by the weighted sum
over the discrete set of points uniformly distributed in the
whole integration region as in Fig. 3. The number of points
for the weighted sums are 535 for both
det(DDW

0 )2/det(DAP
0 )2 and for det(DDW

N )2/det(DAP
N )2 with

NÞ0. The value of

DetN[
E dn1dn2 det~DDW

N !2/det~DAP
N !2

E dn1dn2 det~DDW
0 !2/det~DAP

0 !2

~30!

is plotted in Fig. 4. It decreases asuNu increases, due to the
contribution of small eigenvalues proportional to the fermion

0
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0.6

0.8

1
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1.4

0 0.5 1 1.5 2 2.5 3 3.5 4

S
N

G
 m

in

topological charge N

data
0.0775|N|2

FIG. 2. Minimum action in each topological sector is plotted as
a function of the topological charge. Closed squares are the data and
the dashed line is the fit with a quadratic function.
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FIG. 3. Three-dimensional plot of then dependence of the fermion determinant det(DDW
N )2/det(DAP

N )2. Left: N50 case, right:N51
case.
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mass, which emerge in the nontrivial topological sectors
since the Atiyah-Singer index theorem is realized on the lat-
tice in theL3→` limit @7#.

In order to obtain the exponential factor in Eq.~29!, we
need to evaluate the integral of the following quantity

Ssubtr
N ~b8,m![^SG2SG min

N &b8,m
N

2^SG&b8,m
0 . ~31!

SinceSsubtr
N (b8,m) decreases rapidly asb8→`, the integral

of Ssubtr
N over b8 is well approximated by a weighted sum

over the discrete set of points forSsubtr
N (b8,m) at b8

50.5,1.0,1.5,2.0. For eachb8, we evaluateSsubtr
N (b8,m) by

sampling more than 5000 configurations. The results are
summarized in Table I.

Total reweighting factorRN(b,m) at b50.5 andm50.2
is plotted in Fig. 5. It is shown that higher topological sectors
are indeed suppressed by the reweighting factor.

Finally, combining the correlators and the reweighting
factors, we obtain the total expectation values on the
nonzero-u vacuum as

(
y

^p~x,y!p~0,0!& full

5 (
N524

4

eiNu(
y

^p~x,y!p~0,0!&b,m
N RN~b,m!,

~32!

up to a constant normalization factor. Here we have ignored
uNu.4 sectors since they only give contributions less than
1.2% of zero sector for the pion. Then we can get the pion
mass including full nonperturbative effects andu depen-
dence. In this calculation, the propagators are fitted by mini-
mizing thex2 and the total statistical errors are estimated by
summing those in individual sections in quadrature.

We compute the eta meson propagator in a similar manner
as

(
y

^h~x,y!h~0,0!& full

5 (
N524

4

eiNu(
y

^h~x,y!h~0,0!&b,m
N RN~b,m!.

~33!

However, it seems that the propagator obtained by summing
throughuNu<4 sectors does not saturate so that the trunca-
tion error is still large. Obviously, higher topological sectors
are necessary. In this paper we only present the status of our
exploratory studies but no definite quantitative results.

D. Systematic errors

In this section we discuss possible systematic errors.
These error estimations show that our simulation is reason-
able and the results are reliable.

Let us now study the lattice spacing dependence. We mea-
sure a dimensionless quantityA[mp

6 /(m4s) at b
50.5,1.0,1.5,2.0 in the zero topological sector, wheremp

denotes pion mass ands denotes the string tension defined
from the logarithm of the plaquette expectation value in the
zero sector. As Fig. 6 indicates, the results atb50.5 show no
large lattice spacing dependence which suggests that the dis-
cretization error is under control.

Next we discuss finite size effects for the space-time size
L and for the extra dimension sizeL3. We measure the pion

TABLE I. The value of*db8Ssubtr
N in each sector.

Topological charge *db8Ssubtr
N Error

0 0 0
1 20.201 0.088
2 0.099 0.088
3 0.32 0.12
4 0.47 0.14
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FIG. 5. The total reweighting factorRN(0.5,0.2) is plotted as a
function of the topological charge. The factor falls off rapidly as the
topological charge increases.
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FIG. 6. Lattice spacing dependence of the dimensionless quan-
tity A[mp

6 /(m4s). Horizontal axis is the string tension in lattice
unit. The ‘‘string tension’’ is obtained from the logarithm of the
expectation value of a plaquette in theN50 sector.
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mass on the lattices of sizeL23L358236, 10236,162

36, 20236, 16232, 16234, and 162310 in the zero sec-
tor. Figure 7 showsL dependence and Fig. 8 showsL3 de-
pendence. We find that the meson mass is stable forL larger
than 16 and forL3 larger than 6 so that the finite size error is
also under control with our choice of the lattice size 162

36. The discretization error and finite size errors from the
nonzero topological sector are similarly under control.

We now study the error in the integration over the moduli
n1,2. In order to estimate the systematic error we also evalu-
ate the integral by the weighted sum of 10310 points. We
find that the change is very tiny~relative change;1028) and
is negligible compared to other systematic errors, as is ex-
pected from the mildn dependence of det(DDW

0 )2/det(DAP
0 )2

in Fig. 3. Figure 3 also shows that det(DDW
N )2/det(DAP

N )2

with NÞ0 has almost non dependence. In fact this remark-
able flat dependence is also seen in the continuum counter-
part analytically@39#. We therefore conclude that the error in
the weighted sum is even more negligible for the nonzero
topological sector.

Since the integral ofSsubtr
N overb8 is approximated by the

trapezoidal rule using the data for the discrete set ofb8
points, the error in this approximation should be estimated.
For this purpose we evaluate the integral ofSsubtr

N in an alter-
native way, in which we fit the discrete set of data with the
function of the form

Ssubtr
N ~b8,m!5

a1

b82
1

a2

b83
, ~34!

and compute the integral ofSsubtr
N overb8 analytically. Table

II shows the difference of the two ways of evaluation. The
pion masses are consistent with each other. Thus we find that
the approximation for the integral ofSsubtr

N does not give
large systematic errors in the meson mass. We now study the
truncation error in the sum over topological sectors. As we
discussed before, we neglectuNu.4 sectors since these con-
tributions are suppressed by a large value of action and fer-
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TABLE II. The reweighting factor in each sector from two dif-
ferent methods of evaluating the integral ofSsubtr

N ; the trapezoidal
rule and the integral of the polynomial fit. The resulting pion mass
is are also given.

By trapezoidal rule By fit

R0(0.5,0.2) 1.0 1.0
R1(0.5,0.2) 0.637~56! 0.59~22!

R2(0.5,0.2) 0.442~39! 0.45~16!

R3(0.5,0.2) 0.201~25! 0.32~18!

R4(0.5,0.2) 0.0636~91! 0.072~46!

mp~at u50) 0.647~7! 0.650~34!

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0  1  2  3  4  5  6  7

π 
m

as
s 

(θ
 =

 0
.3

)

highest topological charge Nmax

0.590

FIG. 9. The pion mass from the sum overuNu<uNmaxu sector
contributions form50.2 andu50.3p. No change in the mass for
Nmax>4 is observed.

LATTICE STUDY OF THE MASSIVE SCHWINGER . . . PHYSICAL REVIEW D 68, 074503 ~2003!

074503-7



mion zero modes. Figure 9 shows the pion mass atu
50.3p measured for a variety of the highest topological
chargeNmax. Therefore the truncation error in the sum over
topological sectors are negligible in comparison with the sta-
tistical errors for the pion.

IV. MESON MASSES

A. Pion mass andu dependence

Figure 10 shows pion propagators in each topological sec-
tor and Fig. 11 shows full propagators at variousu. We mea-
sure the pion mass by fitting these data to the hyperbolic
cosine function. The fit range isx5@5,8# for which we find a
good plateau in the effective mass plot as shown in Fig. 12.
In fitting x2/do f is also a small value (x2/do f,0.1).

Figure 13 shows pion mass atu50 as a function of fer-
mion massm. We ignore them dependence ofSsubtr

N (b8,m)
and use them50.2 result for allm. We fit the results to the
following function suggested by the continuum theory with a
possible additional constant termb from the residual mass of
pion:

mp~m!5am2/31b. ~35!

Figure 13 shows that Eq.~35! fits the data very well
(x2/do f50.39) so that the fermion mass dependence is con-
sistent with the continuum theory. The residual mass of the
pion measured in the chiral limit is also tiny asb520.057
60.060, which shows that the violation of the chiral sym-
metry is very small.

In Fig. 14 we present theu dependence of the pion mass
at b50.5 andm50.2. As a remarkable feature, the result is
in perfect agreement with that in the continuum theory in the
u/(2p),0.5 region. A good control of theu dependence
shows that our method for summing over different topologi-
cal sectors with Lu¨scher’s gauge action indeed works nu-
merically.

At large u statistical errors increase, due to cancellations
of propagators among different topological sectors. In the
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calculation, we approximate the integral ofSsubtr
N (b8,m) by

the trapezoidal rule for the discrete set ofb8 points, but this
does not seem to be the reason for the large fluctuation in the
u/(2p).0.5 region. The main nonperturbative contribution
comes from DetN and Ssubtr

N (b8,m) gives only perturbative
effects of orderb822.

We suspect that this large fluctuation is an example of the
well-known phase problem. Simply increasing the statistics
might not improve the situation.

Of course in application to QCD, it will be important to
evaluateSsubtr

N (b8,m) and other observables more precisely.

B. h meson correlator and U„1… problem

As the final subject, we would like to present the result of
our exploratory measurement of theh meson mass in order
to study the topological structure. Theh propagator consists
of two parts:

^hh&522K trS g3

1

D
g3

1

D D L 14K trS g3

1

D D trS g3

1

D D L ,

~36!

where the first term is the same as the flavor nonsingletp
propagator and the second term gives the ‘‘hair-pin’’ or dis-
connected contribution to the flavor singlet operator. Because
the number of physical space-time points is only 16316, we
compute the ‘‘hair-pin’’ contribution by brute force, namely
by solving the fermion propagator for all points without re-
lying on the noise method@40# or Kuramashi method@41#.

Figure 15 shows the contribution of the second term in
each sector, whereas Fig. 16 shows the full~symmetrized! h
propagator atm50.2 andu50. We also present effective
mass plot in Fig. 17. We find that the fall ofh propagator is
steeper than that ofp which gives qualitatively consistent
results with the U(1) problem, although it suffers from both
the theoretical errors as well as the large statistical errors
making quantitative studies difficult. One of the major
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sources of errors is the truncation in the topological sectors,
since summation with topological charge forN<4 does not
show a satisfactory saturation unlike the case of the pion.
Therefore further studies with a sufficiently larger number of
topological sectors are necessary to confirm the stability of
the data against the truncation. One also needs new ideas for
efficiently reducing the statistical errors.

V. SUMMARY AND DISCUSSION

In this paper, we elucidate the role of the admissibility
condition on the topological and chiral properties in lattice
gauge theories by applying Lu¨scher’s action together with
domain wall fermions to a numerical simulation of the mas-
sive Schwinger model. To investigate theu-dependence of
the correlators, we have developed a method to sum over
different topological sectors. We have found that Lu¨scher’s
action is indeed applicable to Monte Carlo simulations and
all the results are consistent with those in the continuum
theory, confirming the validity of our method.

We summarize the features of this action here again.~1!
In Lüscher’s action, the gauge field strength is uniquely de-
termined from the plaquette and the gauge action is a smooth
function of the field strength.~2! The range of the action is
not compact;

0<SG,`. ~37!

This is the same situation as continuum theory. We can treat
the theory in terms of the field strength rather than
plaquettes. According to these features, Lu¨scher’s gauge ac-
tion has many advantages.

~1! The use of this gauge action with the domain wall fer-
mion action is valid even for the strong coupling regime
since unphysical configurations are suppressed.~We find
the suppression effect is especially remarkable in
quenched approximation as discussed in the Appendix.!

~2! We can treat the topological properties of the lattice
theories precisely. This exact topological treatment is

useful not only mathematically but also in a practical
point of view. In the conventional approach, there are
two technical problems, i.e., violation of chirality at
strong coupling and the slowing down of the topology
change in unquenched simulation. For the former prob-
lem, the improved gauge actions which suppress the dis-
locations are proposed. However, in principle the sup-
pression of the dislocations also suppresses the topology
change so that the latter problem becomes even more
difficult. Our method makes the improvement to the ex-
treme and prohibits both the dislocation and the topology
change completely, however, by computing each topo-
logical sector and its reweighting factor we can reconcile
the solutions to the topology change problem and the
dislocation problem at the same time.

~3! Once each topological sector can be computed sepa-
rately, we can obtain au dependence at once.

~4! Aside from the fact that we must simulate for each sector
the typical simulation, time needed for the trivial topo-
logical sector is no larger than that of using Wilson’s
plaquette action. For the nonzero topological charge sec-
tor, one can also increase the statistics at will very effi-
ciently, in contrast to the conventional method where one
can increase the statistics only by reaching the thermal
equilibrium. In this sense, our method would have ad-
vantages in physical quantities for which the topological
sectors with larger instanton numbers give larger contri-
butions.

It will be interesting to explore the possibility of applying
Lüscher’s type of gauge action to QCD in four dimensions.
The reweighting factor, however, would not be easy to cal-
culate since the Dirac matrix is very large and the exact
topological index as well as the structure of the gauge field
space are much more complicated in four-dimensional torus
@9#. Moreover, one should find the minimum of the gauge
action in each sector since the self-dual classical solutions
are not known in some cases. We still hope that the under-
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FIG. 18. The Monte Carlo evolutions of the topological charge in the quenched calculation with Wilson’s gauge action and Lu¨scher’s
gauge action for the gauge couplings having the same string tension. Left: Wilson’s gauge action atb53.4. Right: Lüscher’s gauge action
at b51.0. Lüscher’s gauge action shows no topology change.
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standing of the topological properties in lattice QCD will be
improved by applying Lu¨scher’s admissibility condition.
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APPENDIX

In this appendix, we examine the validity of Lu¨scher’s
action in the quenched approximation. We set the lattice size

to be 3233235 and measure the pion mass. Gauge coupling
b is chosen to give the same string tensions50.18; b
51.0 for Lüscher’s action andb53.4 for Wilson’s action.

Figure 18 shows the evolution of the topological charge.
Since the zero modes in the fermion determinants are all
neglected in the quenched approximation with Wilson action,
there is no suppression on topology changes. On the other
hand, Lüscher’s action never allows topology changes.
Moreover, one can see that the fermion mass dependence of
the pion mass is much better with Lu¨scher’s action than that
of N50 configurations with Wilson’s action as is clear in
Fig. 19. In fact, by fitting the results to the functionamb we
obtain

b50.76860.194 ~Wilson!,

b50.64960.025 ~Lüscher!. ~A1!

The indexb with Lüscher’s action is very close to 2/3.
For a theoretically complete study of the quenched

Schwinger model, we should take a sum over different topo-
logical sectors and compare with analytic result in which it is
predicted that the quenching effect does give a different fer-
mion mass dependence from that in the unquenched theory
@27#.
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