62 research outputs found

    High-voltage-activated Ca2+ currents and the excitability of pyramidal neurons in the hippocampal CA3 subfield in rats depend on corticosterone and time of day

    Get PDF
    This study tested the time-of-day dependence of the intrinsic postsynaptic properties of hippocampal CA3 pyramidal neurons. High-voltage-activated Ca2+ currents and the Ca2+- and voltage-dependent afterhyperpolarizations were examined in slices of rat brains obtained at four distinct time periods. Just after onset of the dark phase, the steady-state amplitude of the Ca2+ current (-1.24 ± 0.11 nA) was significantly greater (P < 0.03) than that of the light phase (-0.84 ± 0.06 nA). Over the entire time range, the amplitude of the Ca2+ current correlated with plasma corticosterone levels in a U-shaped function. Furthermore, depolarization-induced excitability during the dark phase exhibited an increased spike after depolarization (3.1 ± 0.1 mV) and a slower adaptation of the firing frequency (146 ± 18%). These findings point to a dynamic time-of-day dependence of the CA3 neuronal properties and postsynaptic Ca2+ currents.

    Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    Get PDF
    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism

    Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation

    Get PDF
    Recent studies have unequivocally identified multipotent stem/progenitor cells in mammary glands, offering a tractable model system to unravel genetic and epigenetic regulation of epithelial stem/progenitor cell development and homeostasis. In this study, we show that Pygo2, a member of an evolutionarily conserved family of plant homeo domain–containing proteins, is expressed in embryonic and postnatal mammary progenitor cells. Pygo2 deficiency, which is achieved by complete or epithelia-specific gene ablation in mice, results in defective mammary morphogenesis and regeneration accompanied by severely compromised expansive self-renewal of epithelial progenitor cells. Pygo2 converges with Wnt/β-catenin signaling on progenitor cell regulation and cell cycle gene expression, and loss of epithelial Pygo2 completely rescues β-catenin–induced mammary outgrowth. We further describe a novel molecular function of Pygo2 that is required for mammary progenitor cell expansion, which is to facilitate K4 trimethylation of histone H3, both globally and at Wnt/β-catenin target loci, via direct binding to K4-methyl histone H3 and recruiting histone H3 K4 methyltransferase complexes

    Redes epóxi/amina alifáticas com perspectivas para aplicações cardiovasculares. Propriedades biológicas in vitro

    Get PDF
    Este trabalho descreve as propriedades biológicas in vitro de três redes epoxídicas à base do éter diglicidílico do glicerol (DGEG) curadas com poli(oxipropileno) diamina (D230), isoforona diamina (IPD) e 4,4'-diamino-3,3'-dimetil-diciclohexilmetano (3DCM). As interações biológicas entre os polímeros e o sangue foram estudadas por ensaios biológicos in vitro. Estudos de adsorção de proteínas, adesão de plaquetas, atividade do lactato desidrogenase (LDH) e propriedades de tromboresistência estão apresentados. Os ensaios de adsorção de proteínas na superfície dos polímeros mostrou que as redes epoxídicas adsorvem mais albumina do que fibrinogênio. Os resultados relacionados à adesão de plaquetas, atividade do lactato hidrogenase e propriedades de tromboresistência indicaram que as redes DGEG/IPD e DGEG/3DCM exibem comportamento hemocompatível. Desta maneira, assumimos que estes polímeros epoxídicos são materiais compatíveis com o sangue

    Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients

    Get PDF
    Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link

    Investigation of Microwave Resonators for Monitoring Biological Parameters

    No full text
    This study focuses on feasibility analysis of different planar microwave resonators to monitor different biological parameters in human and animals. The methodology is based on the principle of change in resonance of the resonator due to the change in dielectric properties of surrounding tissues correlated with metabolism. Two Resonators namely Split Ring Resonator and Stepped Impedance Resonator are subjected to study. The resonance frequency of the resonator is found to be a function of their geometry and dielectric constant of the medium surrounding it. The responses of the resonators for various resonator experimental validation. The responses of resonators to different fluids are observed and the feasibility as an implantable sensor is investigated by embedding the resonators in animal tissue

    Investigation of Microwave Resonators for Monitoring Biological Parameters

    No full text
    This study focuses on feasibility analysis of different planar microwave resonators to monitor different biological parameters in human and animals. The methodology is based on the principle of change in resonance of the resonator due to the change in dielectric properties of surrounding tissues correlated with metabolism. Two Resonators namely Split Ring Resonator and Stepped Impedance Resonator are subjected to study. The resonance frequency of the resonator is found to be a function of their geometry and dielectric constant of the medium surrounding it. The responses of the resonators for various resonator experimental validation. The responses of resonators to different fluids are observed and the feasibility as an implantable sensor is investigated by embedding the resonators in animal tissue
    corecore