49 research outputs found

    Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions

    Full text link
    Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999)) used velocity moments of a semiclassical kinetic equation to derive a hydrodynamic description of electron motion in a degenerate electron gas. Independently, the present authors (Theochem 501-502, 327 (2000)) used considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett. 73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p

    Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions

    Get PDF
    Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions

    Helioseismology and Solar Abundances

    Get PDF
    Helioseismology has allowed us to study the structure of the Sun in unprecedented detail. One of the triumphs of the theory of stellar evolution was that helioseismic studies had shown that the structure of solar models is very similar to that of the Sun. However, this agreement has been spoiled by recent revisions of the solar heavy-element abundances. Heavy element abundances determine the opacity of the stellar material and hence, are an important input to stellar model calculations. The models with the new, low abundances do not satisfy helioseismic constraints. We review here how heavy-element abundances affect solar models, how these models are tested with helioseismology, and the impact of the new abundances on standard solar models. We also discuss the attempts made to improve the agreement of the low-abundance models with the Sun and discuss how helioseismology is being used to determine the solar heavy-element abundance. A review of current literature shows that attempts to improve agreement between solar models with low heavy-element abundances and seismic inference have been unsuccessful so far. The low-metallicity models that have the least disagreement with seismic data require changing all input physics to stellar models beyond their acceptable ranges. Seismic determinations of the solar heavy-element abundance yield results that are consistent with the older, higher values of the solar abundance, and hence, no major changes to the inputs to solar models are required to make higher-metallicity solar models consistent with helioseismic data.Comment: To appear in Physics Reports. Large file (1.6M PDF, 3.4M PS), 27 figure
    corecore