8 research outputs found

    An asymmetric junctional mechanoresponse coordinates mitotic rounding with epithelial integrity

    Get PDF
    Epithelia are continuously self-renewed, but how epithelial integrity is maintained during the morphological changes that cells undergo in mitosis is not well understood. Here, we show that as epithelial cells round up when they enter mitosis, they exert tensile forces on neighboring cells. We find that mitotic cell–cell junctions withstand these tensile forces through the mechanosensitive recruitment of the actin-binding protein vinculin to cadherin-based adhesions. Surprisingly, vinculin that is recruited to mitotic junctions originates selectively from the neighbors of mitotic cells, resulting in an asymmetric composition of cadherin junctions. Inhibition of junctional vinculin recruitment in neighbors of mitotic cells results in junctional breakage and weakened epithelial barrier. Conversely, the absence of vinculin from the cadherin complex in mitotic cells is necessary to successfully undergo mitotic rounding. Our data thus identify an asymmetric mechanoresponse at cadherin adhesions during mitosis, which is essential to maintain epithelial integrity while at the same time enable the shape changes of mitotic cells

    Study on effect of greenery in campus area

    No full text
    PLEA 2006 - 23rd International Conference on Passive and Low Energy Architecture, Conference ProceedingsI483-I48

    Incidental use of ecstasy: no evidence for harmful effects on cognitive brain function in a prospective fMRI study

    No full text
    Rationale Heavy ecstasy use in humans has been associated with cognitive impairments and changes in cognitive brain function supposedly due to damage to the serotonin system. There is concern that even a single dose of 3,4-methylenedioxymethamphetamine may be neurotoxic, but very little is known about the consequences of a low dose of ecstasy for cognitive brain function. Objectives The objective of the study was to assess the effects of a low dose of ecstasy on human cognitive brain function using functional magnetic resonance imaging (fMRI). Materials and method We prospectively studied, as part of the NeXT (Netherlands XTC toxicity) study, sustained effects of a low dose of ecstasy on brain function in 25 subjects before and after their first episode of ecstasy use (mean 2.0 ± 1.4 ecstasy pills, on average 11.1 ± 12.9 weeks since last ecstasy use), compared to 24 persistent ecstasy-naive controls, also measured twice and matched with the novice users on age, gender, IQ, and cannabis use. Cognitive brain function was measured in the domains of working memory, selective attention, and associative memory using fMRI. Results No significant effects were found of a low dose of ecstasy on working memory, selective attention, or associative memory neither at the behavioral level nor at the neurophysiological level. Conclusions This study yielded no firm evidence for sustained effects of a low dose of ecstasy on human cognitive brain function. The present findings are relevant for the development of prevention and harm reduction strategies. Furthermore, the study is relevant to the discussion concerning potential therapeutic use of ecstasy

    Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective cohort study

    No full text

    Search for new resonances decaying to a WW or ZZ boson and a Higgs boson in the ℓ+ℓ−bbˉ\ell^+ \ell^- b\bar b, â„“Îœbbˉ\ell \nu b\bar b, and ΜΜˉbbˉ\nu\bar{\nu} b\bar b channels with pppp collisions at s=13\sqrt s = 13 TeV with the ATLAS detector

    Get PDF
    See paper for full list of authors, 18 pages (plus author list + cover pages: 36 pages total), 13 figures, 1 table. Submitted to PLB. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2015-18/International audienceA search is presented for new resonances decaying to a WW or ZZ boson and a Higgs boson in the ℓ+ℓ−bbˉ\ell^+ \ell^- b\bar b, â„“Îœbbˉ\ell\nu b\bar b, and ΜΜˉbbˉ\nu\bar{\nu} b\bar b channels in pppp collisions at s=13\sqrt s = 13 TeV with the ATLAS detector at the Large Hadron Collider using a total integrated luminosity of 3.2 fb−1^{-1}. The search is conducted by looking for a localized excess in the WHWH/ZHZH invariant or transverse mass distribution. No significant excess is observed, and the results are interpreted in terms of constraints on a simplified model based on a phenomenological Lagrangian of heavy vector triplets
    corecore