52 research outputs found

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue

    No full text
    In a recently described model for tissue engineering, an arteriovenous loop comprising the femoral artery and vein with interposed vein graft is fabricated in the groin of an adult male rat, placed inside a polycarbonate chamber, and incubated subcutaneously. New vascularized granulation tissue will generate on this loop for up to 12 weeks. In the study described in this paper three different extracellular matrices were investigated for their ability to accelerate the amount of tissue generated compared with a no-matrix control. Poly-D,L-lactic-co-glycolic acid (PLGA) produced the maximal weight of new tissue and vascularization and this peaked at two weeks, but regressed by four weeks. Matrigel was next best. It peaked at four weeks but by eight weeks it also had regressed. Fibrin (20 and 80 mg/ml), by contrast, did not integrate with the generating vascularized tissue and produced less weight and volume of tissue than controls without matrix. The limiting factors to growth appear to be the chamber size and the capacity of the neotissue to integrate with the matrix. Once the sides of the chamber are reached or tissue fails to integrate, encapsulation and regression follow. The intrinsic position of the blood supply within the neotissue has many advantages for tissue and organ engineering, such as ability to seed the construct with stem cells and microsurgically transfer new tissue to another site within the individual. In conclusion, this study has found that PLGA and Matrigel are the best matrices for the rapid growth of new vascularized tissue suitable for replantation or transplantation

    Differentiation of a colon cancer cell line on a reconstituted basement membrane in vitro

    No full text
    Basement membrane, a thin extracellular matrix, functions as a tissue stabilizer that promotes tissue integrity and differentiated phenotype. We studied a human colon cancer cell line, SNU 61, to evaluate its ability to differentiate on basement membrane. Cells were cultured on plastic, reconstituted basement membrane (Matrigel) or polyhydroxyethyl methacrylate (poly HEMA) for 72 h and evaluated by light and electron microscopy. On Matrigel, the cells showed gland formation with highly polarized cells containing basal nuclei and well developed brush border microvilli on the luminal surface. Apoptosis was noted mainly at the luminal side. On electron microscopic examination, numerous long microvilli, abundant cytoplasmic organelles and intercellular junctions were noted in the Matrigel-cultured cells. Intermediate cytoskeletons were scattered in the cytoplasm and existed on the axes of microvilli. Junctional complexes and desmosomes were frequently formed along intercellular spaces. The cells cultured on poly HEMA, on the other hand, were poorly differentiated and contained a few glandular structures with small lumens. Brush border microvilli, characteristic of enterocytic differentiation, were few in number and were developed on the basal surface. Intermediate filaments and microtubules were fewer than in the Matrigel-cultured cells. Carcinoembryonic antigen was expressed on the luminal surface of the Matrigel-cultured cells and in the cytoplasm of the poly HEMA cultured cells. CD44 stained the basolateral surface in the Matrigel-cultured cells, but the basal side was not stained in the poly HEMA cultured cells. These results are consistent with the different localization of microvilli in the Matrigel and in the poly HEMA cultured cells. Our observations suggest that human colon cancer cells on basement membrane can undergo glandular differentiation and that extracellular matrix is an important factor in morphogenesis
    corecore