40 research outputs found

    A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source

    Full text link
    We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early phase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure

    Simulation of Plasmoid Creation near a Rotating Black Hole

    No full text
    Relativistic jet phenomena are most often observed in the vicinity of black holes, where the surrounding plasma accretion plays an important role in the formation of these jets. The presence of a magnetic field is crucial since it has a significant effect on the accretive behaviour of a plasma. Primarily, the magnetic field links the central source with the ambient plasma and can be considered as a set of wires which can transport energy toward the black hole and away by means of MHD waves. Moreover, the magnetic field is able to collimate the plasma flow, which gives rise to a relativistic jet formation. To investigate the behaviour of a magnetized plasma accretion around a spinning black hole we use a string approach, which allows to depict the magnetized plasma as a set of magnetic flux tubes/string. It turned out that the interaction of the magnetic flux tube with the spinning black hole leads to an energy extraction process, which is attended by a relativistic jet creation. The influence of the reconnection process on the jet evolution leads to the formation of plasmoids, which move outward from the central source and remove energy and angular momentum. This process can be repeated over and over and finally the jet structure is composed of a chain of plasmoids which propagate along the spin hole axis

    Similar behaviors of natural ELF/VLF ionospheric emissions and transmitter signals over seismic Adriatic regions

    No full text
    International audienceWe report on the analysis of ELF/VLF emissions observed by the Instrument Champ Electrique (ICE) experiment onboard the DEMETER micro-satellite. We consider principally selected seismic events reported by Molchanov et al. (2006). These authors studied the VLF signals radiated by ground transmitters and received on board the DEMETER micro-satellite. They revealed a drop of the signals (scattering spot) connected with the occurrence of large earthquakes. In our investigations, we proceed to a spectral analysis of ICE observations with the aim to find if the natural ionospheric VLF/ELF emissions show, or not, a similar ''drop'' in the intensity as it is the case of the VLF transmitter signal. We combine our results with those of Molchanov et al. (2006), and we discuss the origin of such interesting ionospheric features in the frame of the investigation of the pre-seismic electromagnetic emissions. We show that the geomagnetic activity is a key parameter which could disturb the natural VLF ionospheric emissions, and also the transmitter signal. We find that it is not possible to conclude the presence, or not, of a preseismic effect when the Kp-index is higher than one

    Kink-like mode of a double gradient instability in a compressible plasma current sheet

    No full text
    A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet

    Decrease of VLF transmitter signal and Chorus-whistler waves before l'Aquila earthquake occurrence

    Get PDF
    International audienceWe investigate the VLF emissions observed by the Instrument Champ Electrique (ICE) experiment onboard the DEMETER micro-satellite. We analyze intensity level variation 10 days before and after the occurrence of l'Aquila earthquake (EQ). We found a clear decrease of the VLF received signal related to ionospheric whistler mode (mainly Chorus emission) and to signal transmitted by the DFY VLF station in Germany, few days (more than one week) before the earthquake. The VLF power spectral density decreases of more than two orders of magnitude until the EQ, and it recovers to normal levels just after the EQ occurrence. The ge-omagnetic activity is principally weak four days before EQ and increases again one day before l'Aquila seismic event. Our results are discussed in the frame of short-and long-terms earthquakes prediction focusing on the crucial role of the magnetic field of the Earth

    Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

    Get PDF
    We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b ( ∌ 1.68REarth∌1.68REarth) and Kepler-10b ( ∌ 1.416REarth∌1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects
    corecore