919 research outputs found

    The flavor-changing bottom-strange quark production in the littlest Higgs model with T parity at the ILC

    Full text link
    In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the special flavor structures and some new flavor-changing (FC) couplings which could greatly enhance the production rates of the FC processes. We in this paper study some bottom and anti-strange production processes in the LHT model at the International Linear Collider (ILC), i.e., e+e−→bsˉe^+e^-\rightarrow b\bar{s} and γγ→bsˉ\gamma\gamma\rightarrow b\bar{s}. The results show that the production rates of these processes are sizeable for the favorable values of the parameters. Therefore, it is quite possible to test the LHT model or make some constrains on the relevant parameters of the LHT through the detection of these processes at the ILC.Comment: 12 pages, 8 figure

    Superconductivity and single crystal growth of Ni0:05TaS2

    Full text link
    Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS

    "Forbidden" transitions between quantum Hall and insulating phases in p-SiGe heterostructures

    Full text link
    We show that in dilute metallic p-SiGe heterostructures, magnetic field can cause multiple quantum Hall-insulator-quantum Hall transitions. The insulating states are observed between quantum Hall states with filling factors \nu=1 and 2 and, for the first time, between \nu=2 and 3 and between \nu=4 and 6. The latter are in contradiction with the original global phase diagram for the quantum Hall effect. We suggest that the application of a (perpendicular) magnetic field induces insulating behavior in metallic p-SiGe heterostructures in the same way as in Si MOSFETs. This insulator is then in competition with, and interrupted by, integer quantum Hall states leading to the multiple re-entrant transitions. The phase diagram which accounts for these transition is similar to that previously obtained in Si MOSFETs thus confirming its universal character

    B→KB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the B→KB\to K transition form factor F+,0B→K(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Ψp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0B→K(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0B→K(0)/F+,0B→π(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure

    Grover search with pairs of trapped ions

    Full text link
    The desired interference required for quantum computing may be modified by the wave function oscillations for the implementation of quantum algorithms[Phys.Rev.Lett.84(2000)1615]. To diminish such detrimental effect, we propose a scheme with trapped ion-pairs being qubits and apply the scheme to the Grover search. It can be found that our scheme can not only carry out a full Grover search, but also meet the requirement for the scalable hot-ion quantum computing. Moreover, the ion-pair qubits in our scheme are more robust against the decoherence and the dissipation caused by the environment than single-particle qubits proposed before.Comment: RevTe

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    The B^- -> phi phi K^- decay rate with phi phi invariant mass below charm treshold

    Full text link
    We investigate the decay mechanism in the B^- -> phi phi K^- decay with the phi phi invariant mass below the charm threshold and in the neighborhood of the eta_c invariant mass region. Our approach is based on the use of factorization model and the knowledge of matrix elements of the weak currents. For the B meson weak transition we apply form factor formalism, while for the light mesons we use effective weak and strong Lagrangians. We find that the dominant contributions to the branching ratio come from the eta, eta' and eta(1490) pole terms of the penguin operators in the decay chains B^- -> eta (eta', eta(1490)) K^- -> phi phi K^-. Our prediction for the branching ratio is in agreement with the Belle's result.Comment: 14 pages, 4 figures, 2 table
    • …
    corecore